L(s) = 1 | + (0.430 + 1.34i)2-s − 2.96·3-s + (−1.62 + 1.15i)4-s + (−0.177 + 2.22i)5-s + (−1.27 − 3.99i)6-s + (−0.115 + 0.115i)7-s + (−2.26 − 1.69i)8-s + 5.79·9-s + (−3.07 + 0.720i)10-s + (2.95 + 2.95i)11-s + (4.83 − 3.43i)12-s + 1.55i·13-s + (−0.204 − 0.105i)14-s + (0.525 − 6.61i)15-s + (1.31 − 3.77i)16-s + (0.299 − 0.299i)17-s + ⋯ |
L(s) = 1 | + (0.304 + 0.952i)2-s − 1.71·3-s + (−0.814 + 0.579i)4-s + (−0.0793 + 0.996i)5-s + (−0.520 − 1.63i)6-s + (−0.0435 + 0.0435i)7-s + (−0.800 − 0.599i)8-s + 1.93·9-s + (−0.973 + 0.227i)10-s + (0.892 + 0.892i)11-s + (1.39 − 0.992i)12-s + 0.432i·13-s + (−0.0546 − 0.0282i)14-s + (0.135 − 1.70i)15-s + (0.327 − 0.944i)16-s + (0.0726 − 0.0726i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.839 - 0.543i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.839 - 0.543i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.164922 + 0.558417i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.164922 + 0.558417i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.430 - 1.34i)T \) |
| 5 | \( 1 + (0.177 - 2.22i)T \) |
good | 3 | \( 1 + 2.96T + 3T^{2} \) |
| 7 | \( 1 + (0.115 - 0.115i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2.95 - 2.95i)T + 11iT^{2} \) |
| 13 | \( 1 - 1.55iT - 13T^{2} \) |
| 17 | \( 1 + (-0.299 + 0.299i)T - 17iT^{2} \) |
| 19 | \( 1 + (2.26 + 2.26i)T + 19iT^{2} \) |
| 23 | \( 1 + (-4.14 - 4.14i)T + 23iT^{2} \) |
| 29 | \( 1 + (-0.289 + 0.289i)T - 29iT^{2} \) |
| 31 | \( 1 - 4.18iT - 31T^{2} \) |
| 37 | \( 1 + 1.63iT - 37T^{2} \) |
| 41 | \( 1 + 7.61iT - 41T^{2} \) |
| 43 | \( 1 + 6.72iT - 43T^{2} \) |
| 47 | \( 1 + (-4.38 - 4.38i)T + 47iT^{2} \) |
| 53 | \( 1 - 11.4T + 53T^{2} \) |
| 59 | \( 1 + (-1.63 + 1.63i)T - 59iT^{2} \) |
| 61 | \( 1 + (1.23 + 1.23i)T + 61iT^{2} \) |
| 67 | \( 1 + 2.49iT - 67T^{2} \) |
| 71 | \( 1 - 8.00T + 71T^{2} \) |
| 73 | \( 1 + (1.12 - 1.12i)T - 73iT^{2} \) |
| 79 | \( 1 - 3.62T + 79T^{2} \) |
| 83 | \( 1 - 1.62T + 83T^{2} \) |
| 89 | \( 1 + 15.7T + 89T^{2} \) |
| 97 | \( 1 + (-9.69 + 9.69i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.08522907344100390543956213143, −13.91549983801695502107008539384, −12.52816476296601895860674385827, −11.72737978853206026884777954360, −10.62682574478976711029806455803, −9.328088808244823761777077118468, −7.17016833798032541184106816505, −6.70117402993890786866802353201, −5.49639045490722261691543526730, −4.15601253177353902389854066932,
0.916915229086749418346729581447, 4.14657684899582333219578443174, 5.30887662968168042618607220184, 6.28277968221160283579571724451, 8.566928556849731653148284917813, 9.911148282393493865064393454895, 11.00952335081074125359408640808, 11.77549741483412631279254026737, 12.56980963206724800310217852314, 13.39760190120175615566754698764