L(s) = 1 | + (−1.38 − 0.307i)2-s + 2.85·3-s + (1.81 + 0.849i)4-s + (−1.71 + 1.43i)5-s + (−3.94 − 0.879i)6-s + (−0.458 − 0.458i)7-s + (−2.23 − 1.73i)8-s + 5.15·9-s + (2.80 − 1.45i)10-s + (−0.492 + 0.492i)11-s + (5.17 + 2.42i)12-s − 4.52i·13-s + (0.492 + 0.774i)14-s + (−4.89 + 4.09i)15-s + (2.55 + 3.07i)16-s + (−3.12 − 3.12i)17-s + ⋯ |
L(s) = 1 | + (−0.976 − 0.217i)2-s + 1.64·3-s + (0.905 + 0.424i)4-s + (−0.766 + 0.641i)5-s + (−1.60 − 0.358i)6-s + (−0.173 − 0.173i)7-s + (−0.791 − 0.611i)8-s + 1.71·9-s + (0.888 − 0.459i)10-s + (−0.148 + 0.148i)11-s + (1.49 + 0.700i)12-s − 1.25i·13-s + (0.131 + 0.207i)14-s + (−1.26 + 1.05i)15-s + (0.638 + 0.769i)16-s + (−0.758 − 0.758i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0200i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0200i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.898087 - 0.00899030i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.898087 - 0.00899030i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.38 + 0.307i)T \) |
| 5 | \( 1 + (1.71 - 1.43i)T \) |
good | 3 | \( 1 - 2.85T + 3T^{2} \) |
| 7 | \( 1 + (0.458 + 0.458i)T + 7iT^{2} \) |
| 11 | \( 1 + (0.492 - 0.492i)T - 11iT^{2} \) |
| 13 | \( 1 + 4.52iT - 13T^{2} \) |
| 17 | \( 1 + (3.12 + 3.12i)T + 17iT^{2} \) |
| 19 | \( 1 + (4.04 - 4.04i)T - 19iT^{2} \) |
| 23 | \( 1 + (1.80 - 1.80i)T - 23iT^{2} \) |
| 29 | \( 1 + (-3.83 - 3.83i)T + 29iT^{2} \) |
| 31 | \( 1 + 0.139iT - 31T^{2} \) |
| 37 | \( 1 - 5.84iT - 37T^{2} \) |
| 41 | \( 1 + 4.55iT - 41T^{2} \) |
| 43 | \( 1 - 7.49iT - 43T^{2} \) |
| 47 | \( 1 + (-4.14 + 4.14i)T - 47iT^{2} \) |
| 53 | \( 1 - 2.75T + 53T^{2} \) |
| 59 | \( 1 + (-3.62 - 3.62i)T + 59iT^{2} \) |
| 61 | \( 1 + (-3.72 + 3.72i)T - 61iT^{2} \) |
| 67 | \( 1 - 3.32iT - 67T^{2} \) |
| 71 | \( 1 - 1.37T + 71T^{2} \) |
| 73 | \( 1 + (-2.55 - 2.55i)T + 73iT^{2} \) |
| 79 | \( 1 - 3.86T + 79T^{2} \) |
| 83 | \( 1 - 14.4T + 83T^{2} \) |
| 89 | \( 1 - 3.35T + 89T^{2} \) |
| 97 | \( 1 + (4.95 + 4.95i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.70995917268749808985698972704, −13.36529029365862882527797706377, −12.19500905750124686572094158962, −10.70895348002835505541852470220, −9.864848918398146468630431555918, −8.534002622240983379271008313472, −7.901649370793517205816128890697, −6.86453037199916957470210154737, −3.68481460562402221746409382995, −2.58202536610785759150904979431,
2.28443127955614854008954789119, 4.16619993438205904243084955684, 6.71516230036312236492763649200, 7.969638826176142879567816883993, 8.753160246570514032170362482883, 9.342009555296052050996887091755, 10.87355768066164716680751495856, 12.24657568654827227753437136085, 13.49726666599547191693869829338, 14.70163809646811249694947051059