Properties

Label 2-80-5.3-c4-0-0
Degree $2$
Conductor $80$
Sign $-0.0898 - 0.995i$
Analytic cond. $8.26959$
Root an. cond. $2.87569$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−9 − 9i)3-s + (−15 − 20i)5-s + (−29 + 29i)7-s + 81i·9-s + 118·11-s + (69 + 69i)13-s + (−45 + 315i)15-s + (−271 + 271i)17-s + 280i·19-s + 522·21-s + (−269 − 269i)23-s + (−175 + 600i)25-s − 680i·29-s − 202·31-s + (−1.06e3 − 1.06e3i)33-s + ⋯
L(s)  = 1  + (−1 − i)3-s + (−0.599 − 0.800i)5-s + (−0.591 + 0.591i)7-s + i·9-s + 0.975·11-s + (0.408 + 0.408i)13-s + (−0.200 + 1.39i)15-s + (−0.937 + 0.937i)17-s + 0.775i·19-s + 1.18·21-s + (−0.508 − 0.508i)23-s + (−0.280 + 0.960i)25-s − 0.808i·29-s − 0.210·31-s + (−0.975 − 0.975i)33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0898 - 0.995i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.0898 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80\)    =    \(2^{4} \cdot 5\)
Sign: $-0.0898 - 0.995i$
Analytic conductor: \(8.26959\)
Root analytic conductor: \(2.87569\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{80} (33, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 80,\ (\ :2),\ -0.0898 - 0.995i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.151950 + 0.166267i\)
\(L(\frac12)\) \(\approx\) \(0.151950 + 0.166267i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (15 + 20i)T \)
good3 \( 1 + (9 + 9i)T + 81iT^{2} \)
7 \( 1 + (29 - 29i)T - 2.40e3iT^{2} \)
11 \( 1 - 118T + 1.46e4T^{2} \)
13 \( 1 + (-69 - 69i)T + 2.85e4iT^{2} \)
17 \( 1 + (271 - 271i)T - 8.35e4iT^{2} \)
19 \( 1 - 280iT - 1.30e5T^{2} \)
23 \( 1 + (269 + 269i)T + 2.79e5iT^{2} \)
29 \( 1 + 680iT - 7.07e5T^{2} \)
31 \( 1 + 202T + 9.23e5T^{2} \)
37 \( 1 + (651 - 651i)T - 1.87e6iT^{2} \)
41 \( 1 - 1.68e3T + 2.82e6T^{2} \)
43 \( 1 + (1.08e3 + 1.08e3i)T + 3.41e6iT^{2} \)
47 \( 1 + (1.26e3 - 1.26e3i)T - 4.87e6iT^{2} \)
53 \( 1 + (611 + 611i)T + 7.89e6iT^{2} \)
59 \( 1 - 1.16e3iT - 1.21e7T^{2} \)
61 \( 1 + 5.59e3T + 1.38e7T^{2} \)
67 \( 1 + (-751 + 751i)T - 2.01e7iT^{2} \)
71 \( 1 + 6.44e3T + 2.54e7T^{2} \)
73 \( 1 + (2.95e3 + 2.95e3i)T + 2.83e7iT^{2} \)
79 \( 1 - 1.05e4iT - 3.89e7T^{2} \)
83 \( 1 + (-6.23e3 - 6.23e3i)T + 4.74e7iT^{2} \)
89 \( 1 - 1.44e4iT - 6.27e7T^{2} \)
97 \( 1 + (7.31e3 - 7.31e3i)T - 8.85e7iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.55389769610803420922316558976, −12.49126617138132491543014476262, −12.07378486299941769060545815803, −11.05593650248195123569687280994, −9.290220622696910056336496433318, −8.163420559372984734976821523672, −6.65183338143521544869367835874, −5.87092145649695077088201648484, −4.12267476571919995580683836130, −1.51092581753396996748357753116, 0.13291369947476513892908659453, 3.44493354293145249964170749341, 4.58002665725621892254163500499, 6.21361731335024972686180708857, 7.22721269371798772990754253347, 9.153192522464178186618093036208, 10.29090031740910862929887036134, 11.11668777889133405468566666195, 11.82071930798446062294260502206, 13.40277315145825474034463075286

Graph of the $Z$-function along the critical line