L(s) = 1 | + (−1.73 − 1.73i)3-s + (−1 − 2i)5-s + (1.73 − 1.73i)7-s + 2.99i·9-s + 3.46i·11-s + (1 − i)13-s + (−1.73 + 5.19i)15-s + (1 + i)17-s + 6.92·19-s − 5.99·21-s + (−1.73 − 1.73i)23-s + (−3 + 4i)25-s − 4i·29-s − 3.46i·31-s + (5.99 − 5.99i)33-s + ⋯ |
L(s) = 1 | + (−0.999 − 0.999i)3-s + (−0.447 − 0.894i)5-s + (0.654 − 0.654i)7-s + 0.999i·9-s + 1.04i·11-s + (0.277 − 0.277i)13-s + (−0.447 + 1.34i)15-s + (0.242 + 0.242i)17-s + 1.58·19-s − 1.30·21-s + (−0.361 − 0.361i)23-s + (−0.600 + 0.800i)25-s − 0.742i·29-s − 0.622i·31-s + (1.04 − 1.04i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0299 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0299 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.491552 - 0.506512i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.491552 - 0.506512i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (1 + 2i)T \) |
good | 3 | \( 1 + (1.73 + 1.73i)T + 3iT^{2} \) |
| 7 | \( 1 + (-1.73 + 1.73i)T - 7iT^{2} \) |
| 11 | \( 1 - 3.46iT - 11T^{2} \) |
| 13 | \( 1 + (-1 + i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1 - i)T + 17iT^{2} \) |
| 19 | \( 1 - 6.92T + 19T^{2} \) |
| 23 | \( 1 + (1.73 + 1.73i)T + 23iT^{2} \) |
| 29 | \( 1 + 4iT - 29T^{2} \) |
| 31 | \( 1 + 3.46iT - 31T^{2} \) |
| 37 | \( 1 + (-5 - 5i)T + 37iT^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 + (1.73 + 1.73i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1.73 + 1.73i)T - 47iT^{2} \) |
| 53 | \( 1 + (7 - 7i)T - 53iT^{2} \) |
| 59 | \( 1 + 6.92T + 59T^{2} \) |
| 61 | \( 1 - 6T + 61T^{2} \) |
| 67 | \( 1 + (5.19 - 5.19i)T - 67iT^{2} \) |
| 71 | \( 1 - 10.3iT - 71T^{2} \) |
| 73 | \( 1 + (7 - 7i)T - 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (-12.1 - 12.1i)T + 83iT^{2} \) |
| 89 | \( 1 + 8iT - 89T^{2} \) |
| 97 | \( 1 + (7 + 7i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.81633263773450965288797748318, −12.82061118200499914857382541786, −12.00769583087360798257596335880, −11.24871481432825643109822433450, −9.757738081556957364521266079889, −8.000128972104114014046112469308, −7.26250094854783193422925026063, −5.70724368024664258813509564284, −4.44803129710903846605872563753, −1.21171864887547730782268775920,
3.42667385456365767720831796605, 5.06669545254652433448097839828, 6.11690165593306375463584261633, 7.77689947267413755636464967549, 9.295272979974243628707431541317, 10.58256322170514485076474245011, 11.35617472361586123844384568107, 11.92056483427757098338139318191, 13.87945765887155880541331514453, 14.81327340717866753813452054973