Properties

Label 2-80-1.1-c17-0-17
Degree $2$
Conductor $80$
Sign $-1$
Analytic cond. $146.577$
Root an. cond. $12.1069$
Motivic weight $17$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.00e3·3-s + 3.90e5·5-s − 2.54e7·7-s − 6.50e7·9-s + 2.81e8·11-s − 1.52e9·13-s − 3.12e9·15-s + 5.46e10·17-s − 6.88e8·19-s + 2.03e11·21-s − 3.91e11·23-s + 1.52e11·25-s + 1.55e12·27-s + 5.12e12·29-s + 7.31e10·31-s − 2.24e12·33-s − 9.94e12·35-s − 6.81e12·37-s + 1.22e13·39-s − 5.76e13·41-s − 7.57e13·43-s − 2.54e13·45-s + 4.60e13·47-s + 4.16e14·49-s − 4.37e14·51-s + 6.58e14·53-s + 1.09e14·55-s + ⋯
L(s)  = 1  − 0.704·3-s + 0.447·5-s − 1.66·7-s − 0.503·9-s + 0.395·11-s − 0.518·13-s − 0.314·15-s + 1.90·17-s − 0.00930·19-s + 1.17·21-s − 1.04·23-s + 0.200·25-s + 1.05·27-s + 1.90·29-s + 0.0153·31-s − 0.278·33-s − 0.746·35-s − 0.319·37-s + 0.365·39-s − 1.12·41-s − 0.987·43-s − 0.225·45-s + 0.282·47-s + 1.78·49-s − 1.33·51-s + 1.45·53-s + 0.176·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(18-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+17/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80\)    =    \(2^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(146.577\)
Root analytic conductor: \(12.1069\)
Motivic weight: \(17\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 80,\ (\ :17/2),\ -1)\)

Particular Values

\(L(9)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{19}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 3.90e5T \)
good3 \( 1 + 8.00e3T + 1.29e8T^{2} \)
7 \( 1 + 2.54e7T + 2.32e14T^{2} \)
11 \( 1 - 2.81e8T + 5.05e17T^{2} \)
13 \( 1 + 1.52e9T + 8.65e18T^{2} \)
17 \( 1 - 5.46e10T + 8.27e20T^{2} \)
19 \( 1 + 6.88e8T + 5.48e21T^{2} \)
23 \( 1 + 3.91e11T + 1.41e23T^{2} \)
29 \( 1 - 5.12e12T + 7.25e24T^{2} \)
31 \( 1 - 7.31e10T + 2.25e25T^{2} \)
37 \( 1 + 6.81e12T + 4.56e26T^{2} \)
41 \( 1 + 5.76e13T + 2.61e27T^{2} \)
43 \( 1 + 7.57e13T + 5.87e27T^{2} \)
47 \( 1 - 4.60e13T + 2.66e28T^{2} \)
53 \( 1 - 6.58e14T + 2.05e29T^{2} \)
59 \( 1 - 2.98e14T + 1.27e30T^{2} \)
61 \( 1 - 8.50e14T + 2.24e30T^{2} \)
67 \( 1 - 6.12e15T + 1.10e31T^{2} \)
71 \( 1 + 5.41e14T + 2.96e31T^{2} \)
73 \( 1 + 7.16e15T + 4.74e31T^{2} \)
79 \( 1 + 5.45e15T + 1.81e32T^{2} \)
83 \( 1 - 3.64e15T + 4.21e32T^{2} \)
89 \( 1 - 6.81e14T + 1.37e33T^{2} \)
97 \( 1 + 1.20e17T + 5.95e33T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20159809148455284314896040870, −9.869304902286570624100124741669, −8.466791654189739562683208560282, −6.89169930888481419973888658788, −6.10168002837486496971293166847, −5.25198775759465458230814010785, −3.59196442053614487099116156424, −2.65898612860599523421170307885, −0.990827976280117132610330401199, 0, 0.990827976280117132610330401199, 2.65898612860599523421170307885, 3.59196442053614487099116156424, 5.25198775759465458230814010785, 6.10168002837486496971293166847, 6.89169930888481419973888658788, 8.466791654189739562683208560282, 9.869304902286570624100124741669, 10.20159809148455284314896040870

Graph of the $Z$-function along the critical line