Properties

Label 2-7e2-7.2-c9-0-24
Degree $2$
Conductor $49$
Sign $-0.605 + 0.795i$
Analytic cond. $25.2367$
Root an. cond. $5.02361$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−20.9 + 36.2i)2-s + (−0.116 − 0.201i)3-s + (−617. − 1.06e3i)4-s + (895. − 1.55e3i)5-s + 9.71·6-s + 3.02e4·8-s + (9.84e3 − 1.70e4i)9-s + (3.74e4 + 6.48e4i)10-s + (−8.70e3 − 1.50e4i)11-s + (−143. + 248. i)12-s − 1.22e5·13-s − 416.·15-s + (−3.15e5 + 5.46e5i)16-s + (−1.65e5 − 2.87e5i)17-s + (4.11e5 + 7.12e5i)18-s + (−3.80e5 + 6.59e5i)19-s + ⋯
L(s)  = 1  + (−0.923 + 1.59i)2-s + (−0.000828 − 0.00143i)3-s + (−1.20 − 2.08i)4-s + (0.641 − 1.11i)5-s + 0.00305·6-s + 2.61·8-s + (0.499 − 0.866i)9-s + (1.18 + 2.05i)10-s + (−0.179 − 0.310i)11-s + (−0.00199 + 0.00346i)12-s − 1.18·13-s − 0.00212·15-s + (−1.20 + 2.08i)16-s + (−0.481 − 0.834i)17-s + (0.923 + 1.59i)18-s + (−0.670 + 1.16i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $-0.605 + 0.795i$
Analytic conductor: \(25.2367\)
Root analytic conductor: \(5.02361\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{49} (30, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :9/2),\ -0.605 + 0.795i)\)

Particular Values

\(L(5)\) \(\approx\) \(0.0343620 - 0.0693163i\)
\(L(\frac12)\) \(\approx\) \(0.0343620 - 0.0693163i\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + (20.9 - 36.2i)T + (-256 - 443. i)T^{2} \)
3 \( 1 + (0.116 + 0.201i)T + (-9.84e3 + 1.70e4i)T^{2} \)
5 \( 1 + (-895. + 1.55e3i)T + (-9.76e5 - 1.69e6i)T^{2} \)
11 \( 1 + (8.70e3 + 1.50e4i)T + (-1.17e9 + 2.04e9i)T^{2} \)
13 \( 1 + 1.22e5T + 1.06e10T^{2} \)
17 \( 1 + (1.65e5 + 2.87e5i)T + (-5.92e10 + 1.02e11i)T^{2} \)
19 \( 1 + (3.80e5 - 6.59e5i)T + (-1.61e11 - 2.79e11i)T^{2} \)
23 \( 1 + (6.16e5 - 1.06e6i)T + (-9.00e11 - 1.55e12i)T^{2} \)
29 \( 1 - 6.34e5T + 1.45e13T^{2} \)
31 \( 1 + (-2.69e6 - 4.65e6i)T + (-1.32e13 + 2.28e13i)T^{2} \)
37 \( 1 + (-1.51e6 + 2.62e6i)T + (-6.49e13 - 1.12e14i)T^{2} \)
41 \( 1 + 7.37e6T + 3.27e14T^{2} \)
43 \( 1 + 2.06e7T + 5.02e14T^{2} \)
47 \( 1 + (1.01e7 - 1.76e7i)T + (-5.59e14 - 9.69e14i)T^{2} \)
53 \( 1 + (-2.98e7 - 5.17e7i)T + (-1.64e15 + 2.85e15i)T^{2} \)
59 \( 1 + (3.01e7 + 5.22e7i)T + (-4.33e15 + 7.50e15i)T^{2} \)
61 \( 1 + (-4.72e6 + 8.17e6i)T + (-5.84e15 - 1.01e16i)T^{2} \)
67 \( 1 + (-1.09e8 - 1.89e8i)T + (-1.36e16 + 2.35e16i)T^{2} \)
71 \( 1 + 5.58e7T + 4.58e16T^{2} \)
73 \( 1 + (2.27e8 + 3.93e8i)T + (-2.94e16 + 5.09e16i)T^{2} \)
79 \( 1 + (2.25e7 - 3.90e7i)T + (-5.99e16 - 1.03e17i)T^{2} \)
83 \( 1 + 3.34e8T + 1.86e17T^{2} \)
89 \( 1 + (3.25e8 - 5.64e8i)T + (-1.75e17 - 3.03e17i)T^{2} \)
97 \( 1 + 1.42e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.62028342457367885774216280744, −12.30992805241088150016715152154, −10.03657642968780903833411187304, −9.357562109289490001009796543693, −8.336647094020639853657419278048, −7.03918035508482039961273687509, −5.81351252137971284106220615182, −4.71788336813818308130224656239, −1.35601632932980676344651627442, −0.03590404328207893094632325832, 2.00837307020022900844561615950, 2.63232809013242700943816071836, 4.46982847097643400897359734487, 6.95117294703796144154877292934, 8.332170058417326107228597780401, 9.881480570620605154336426759887, 10.36861713960893537633099581680, 11.32819752931777709018932199798, 12.68338376026844248388084813765, 13.57838699085757617279592449317

Graph of the $Z$-function along the critical line