L(s) = 1 | + (−1.40 + 2.43i)2-s + (3.27 + 5.67i)3-s + (12.0 + 20.8i)4-s + (−22.9 + 39.8i)5-s − 18.4·6-s − 157.·8-s + (100. − 173. i)9-s + (−64.7 − 112. i)10-s + (275. + 477. i)11-s + (−78.8 + 136. i)12-s − 1.09e3·13-s − 301.·15-s + (−163. + 282. i)16-s + (−590. − 1.02e3i)17-s + (281. + 487. i)18-s + (−583. + 1.00e3i)19-s + ⋯ |
L(s) = 1 | + (−0.248 + 0.430i)2-s + (0.210 + 0.363i)3-s + (0.376 + 0.651i)4-s + (−0.411 + 0.712i)5-s − 0.209·6-s − 0.872·8-s + (0.411 − 0.713i)9-s + (−0.204 − 0.354i)10-s + (0.687 + 1.19i)11-s + (−0.158 + 0.273i)12-s − 1.79·13-s − 0.345·15-s + (−0.159 + 0.275i)16-s + (−0.495 − 0.858i)17-s + (0.204 + 0.354i)18-s + (−0.370 + 0.641i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.947 - 0.318i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.947 - 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.198551 + 1.21404i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.198551 + 1.21404i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
good | 2 | \( 1 + (1.40 - 2.43i)T + (-16 - 27.7i)T^{2} \) |
| 3 | \( 1 + (-3.27 - 5.67i)T + (-121.5 + 210. i)T^{2} \) |
| 5 | \( 1 + (22.9 - 39.8i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-275. - 477. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 + 1.09e3T + 3.71e5T^{2} \) |
| 17 | \( 1 + (590. + 1.02e3i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (583. - 1.00e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (22.1 - 38.4i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 - 3.32e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-4.39e3 - 7.60e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-1.27e3 + 2.21e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 - 1.27e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 96.7T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-3.83e3 + 6.65e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-5.97e3 - 1.03e4i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-4.92e3 - 8.53e3i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (1.92e4 - 3.33e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-3.37e4 - 5.84e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 6.13e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-925. - 1.60e3i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-4.26 + 7.38i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 - 9.50e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-2.68e4 + 4.64e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 + 3.11e3T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.08109552370590043288882914781, −14.54761112449404074785941363194, −12.43764926345742456925846337275, −11.87739039274612842804778901686, −10.15741176881194643927593844436, −9.067197218529920161270882856196, −7.36760983071054787822316805893, −6.81213456497124376439808225837, −4.34602994532188341267153832990, −2.75957390372344750956776190908,
0.65574159389265924212460772692, 2.35230236436993423393757883629, 4.70268449039605136858083475364, 6.42138441784189415185922489682, 8.001246975133458463385870135317, 9.267702657198672231355161682330, 10.56967321572820537385970211587, 11.71509202087348875847094919792, 12.75157770724582394012763628571, 14.07972758303177963371686791684