L(s) = 1 | + (−1.16 − 5.11i)2-s + (−1.24 − 1.55i)3-s + (−17.5 + 8.46i)4-s + (0.849 + 1.06i)5-s + (−6.50 + 8.15i)6-s + (−18.2 − 3.22i)7-s + (37.6 + 47.1i)8-s + (5.12 − 22.4i)9-s + (4.45 − 5.58i)10-s + (4.10 + 18.0i)11-s + (34.9 + 16.8i)12-s + (−4.72 − 20.7i)13-s + (4.80 + 97.0i)14-s + (0.603 − 2.64i)15-s + (100. − 125. i)16-s + (−113. − 54.7i)17-s + ⋯ |
L(s) = 1 | + (−0.412 − 1.80i)2-s + (−0.238 − 0.299i)3-s + (−2.19 + 1.05i)4-s + (0.0759 + 0.0952i)5-s + (−0.442 + 0.555i)6-s + (−0.984 − 0.174i)7-s + (1.66 + 2.08i)8-s + (0.189 − 0.831i)9-s + (0.140 − 0.176i)10-s + (0.112 + 0.493i)11-s + (0.841 + 0.405i)12-s + (−0.100 − 0.442i)13-s + (0.0916 + 1.85i)14-s + (0.0103 − 0.0454i)15-s + (1.56 − 1.95i)16-s + (−1.62 − 0.780i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.493 - 0.869i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.493 - 0.869i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.251758 + 0.432074i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.251758 + 0.432074i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (18.2 + 3.22i)T \) |
good | 2 | \( 1 + (1.16 + 5.11i)T + (-7.20 + 3.47i)T^{2} \) |
| 3 | \( 1 + (1.24 + 1.55i)T + (-6.00 + 26.3i)T^{2} \) |
| 5 | \( 1 + (-0.849 - 1.06i)T + (-27.8 + 121. i)T^{2} \) |
| 11 | \( 1 + (-4.10 - 18.0i)T + (-1.19e3 + 577. i)T^{2} \) |
| 13 | \( 1 + (4.72 + 20.7i)T + (-1.97e3 + 953. i)T^{2} \) |
| 17 | \( 1 + (113. + 54.7i)T + (3.06e3 + 3.84e3i)T^{2} \) |
| 19 | \( 1 + 50.2T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-74.0 + 35.6i)T + (7.58e3 - 9.51e3i)T^{2} \) |
| 29 | \( 1 + (52.6 + 25.3i)T + (1.52e4 + 1.90e4i)T^{2} \) |
| 31 | \( 1 - 319.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (240. + 115. i)T + (3.15e4 + 3.96e4i)T^{2} \) |
| 41 | \( 1 + (-153. - 192. i)T + (-1.53e4 + 6.71e4i)T^{2} \) |
| 43 | \( 1 + (-225. + 282. i)T + (-1.76e4 - 7.75e4i)T^{2} \) |
| 47 | \( 1 + (31.0 + 136. i)T + (-9.35e4 + 4.50e4i)T^{2} \) |
| 53 | \( 1 + (-276. + 132. i)T + (9.28e4 - 1.16e5i)T^{2} \) |
| 59 | \( 1 + (350. - 439. i)T + (-4.57e4 - 2.00e5i)T^{2} \) |
| 61 | \( 1 + (561. + 270. i)T + (1.41e5 + 1.77e5i)T^{2} \) |
| 67 | \( 1 - 923.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (176. - 85.0i)T + (2.23e5 - 2.79e5i)T^{2} \) |
| 73 | \( 1 + (13.8 - 60.7i)T + (-3.50e5 - 1.68e5i)T^{2} \) |
| 79 | \( 1 + 432.T + 4.93e5T^{2} \) |
| 83 | \( 1 + (166. - 729. i)T + (-5.15e5 - 2.48e5i)T^{2} \) |
| 89 | \( 1 + (-72.8 + 319. i)T + (-6.35e5 - 3.05e5i)T^{2} \) |
| 97 | \( 1 + 1.53e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.68236663184817685891658156022, −12.75923041228698119730264525296, −12.05190859570372836883666166678, −10.78670423784644199784414099230, −9.773525423789901536673820630853, −8.818682357445503583445620453891, −6.74563589095781280729263184367, −4.25578675151271142181000478655, −2.63951369049817178523612602638, −0.44826609500619063134153523109,
4.53469739120088237400425743508, 5.97472992566443157187892095041, 6.97557559882094102695322195696, 8.488893588254187354101306678692, 9.432940231815231164251567771047, 10.77524024046029139335563382588, 13.03122860293147522847780450968, 13.80864738064681508397660773077, 15.29105863551446716661456990738, 15.83670179061578837417347826931