Properties

Label 2-7e2-49.16-c3-0-0
Degree $2$
Conductor $49$
Sign $-0.0492 - 0.998i$
Analytic cond. $2.89109$
Root an. cond. $1.70032$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.31 − 3.34i)2-s + (0.344 + 4.59i)3-s + (−3.62 + 3.36i)4-s + (−16.7 + 11.4i)5-s + (14.9 − 7.19i)6-s + (−11.8 + 14.2i)7-s + (−9.90 − 4.77i)8-s + (5.71 − 0.861i)9-s + (60.3 + 41.1i)10-s + (8.20 + 1.23i)11-s + (−16.6 − 15.4i)12-s + (−1.90 + 2.38i)13-s + (63.1 + 21.1i)14-s + (−58.3 − 73.1i)15-s + (−5.91 + 78.8i)16-s + (−6.40 + 1.97i)17-s + ⋯
L(s)  = 1  + (−0.464 − 1.18i)2-s + (0.0662 + 0.884i)3-s + (−0.453 + 0.420i)4-s + (−1.50 + 1.02i)5-s + (1.01 − 0.489i)6-s + (−0.641 + 0.767i)7-s + (−0.437 − 0.210i)8-s + (0.211 − 0.0319i)9-s + (1.90 + 1.30i)10-s + (0.224 + 0.0339i)11-s + (−0.401 − 0.372i)12-s + (−0.0405 + 0.0508i)13-s + (1.20 + 0.403i)14-s + (−1.00 − 1.25i)15-s + (−0.0923 + 1.23i)16-s + (−0.0914 + 0.0282i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0492 - 0.998i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.0492 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $-0.0492 - 0.998i$
Analytic conductor: \(2.89109\)
Root analytic conductor: \(1.70032\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{49} (16, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :3/2),\ -0.0492 - 0.998i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.333147 + 0.349993i\)
\(L(\frac12)\) \(\approx\) \(0.333147 + 0.349993i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (11.8 - 14.2i)T \)
good2 \( 1 + (1.31 + 3.34i)T + (-5.86 + 5.44i)T^{2} \)
3 \( 1 + (-0.344 - 4.59i)T + (-26.6 + 4.02i)T^{2} \)
5 \( 1 + (16.7 - 11.4i)T + (45.6 - 116. i)T^{2} \)
11 \( 1 + (-8.20 - 1.23i)T + (1.27e3 + 392. i)T^{2} \)
13 \( 1 + (1.90 - 2.38i)T + (-488. - 2.14e3i)T^{2} \)
17 \( 1 + (6.40 - 1.97i)T + (4.05e3 - 2.76e3i)T^{2} \)
19 \( 1 + (-4.06 + 7.04i)T + (-3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (191. + 59.1i)T + (1.00e4 + 6.85e3i)T^{2} \)
29 \( 1 + (19.9 - 87.5i)T + (-2.19e4 - 1.05e4i)T^{2} \)
31 \( 1 + (-159. - 275. i)T + (-1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (-175. - 163. i)T + (3.78e3 + 5.05e4i)T^{2} \)
41 \( 1 + (32.0 + 15.4i)T + (4.29e4 + 5.38e4i)T^{2} \)
43 \( 1 + (-116. + 56.3i)T + (4.95e4 - 6.21e4i)T^{2} \)
47 \( 1 + (68.8 + 175. i)T + (-7.61e4 + 7.06e4i)T^{2} \)
53 \( 1 + (191. - 177. i)T + (1.11e4 - 1.48e5i)T^{2} \)
59 \( 1 + (-364. - 248. i)T + (7.50e4 + 1.91e5i)T^{2} \)
61 \( 1 + (566. + 525. i)T + (1.69e4 + 2.26e5i)T^{2} \)
67 \( 1 + (-267. - 462. i)T + (-1.50e5 + 2.60e5i)T^{2} \)
71 \( 1 + (-192. - 843. i)T + (-3.22e5 + 1.55e5i)T^{2} \)
73 \( 1 + (331. - 845. i)T + (-2.85e5 - 2.64e5i)T^{2} \)
79 \( 1 + (-395. + 684. i)T + (-2.46e5 - 4.26e5i)T^{2} \)
83 \( 1 + (35.5 + 44.5i)T + (-1.27e5 + 5.57e5i)T^{2} \)
89 \( 1 + (-416. + 62.7i)T + (6.73e5 - 2.07e5i)T^{2} \)
97 \( 1 + 1.61e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.58019856147339674453028304953, −14.59798464124615298315843502371, −12.43226704597419562969216578006, −11.72103382844965128773342154560, −10.63387737767543274665759759832, −9.844336303027356164937141144212, −8.491397783358043402194208898330, −6.66199113454117800878298497803, −4.03453418988464557686850741180, −2.95943760696418905589226822476, 0.42004397336755907633541027702, 4.15595189048705550931489336660, 6.29946723188781913901592602085, 7.67875163846285106290014673325, 7.921617548972518061325553652623, 9.505038023090519139894085689806, 11.66437817572562750624265477732, 12.54756960592721513671393178382, 13.69217150529919800078325069869, 15.29273622606716926924797471145

Graph of the $Z$-function along the critical line