Properties

Label 2-7e2-49.15-c5-0-0
Degree $2$
Conductor $49$
Sign $0.174 + 0.984i$
Analytic cond. $7.85880$
Root an. cond. $2.80335$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.68 + 7.37i)2-s + (−6.81 + 8.54i)3-s + (−22.7 − 10.9i)4-s + (−28.2 + 35.4i)5-s + (−51.5 − 64.6i)6-s + (−64.4 − 112. i)7-s + (−31.6 + 39.6i)8-s + (27.5 + 120. i)9-s + (−213. − 267. i)10-s + (143. − 628. i)11-s + (249. − 119. i)12-s + (−171. + 750. i)13-s + (938. − 286. i)14-s + (−110. − 482. i)15-s + (−744. − 933. i)16-s + (1.09e3 − 527. i)17-s + ⋯
L(s)  = 1  + (−0.297 + 1.30i)2-s + (−0.436 + 0.547i)3-s + (−0.712 − 0.343i)4-s + (−0.505 + 0.633i)5-s + (−0.584 − 0.733i)6-s + (−0.497 − 0.867i)7-s + (−0.174 + 0.219i)8-s + (0.113 + 0.496i)9-s + (−0.675 − 0.847i)10-s + (0.357 − 1.56i)11-s + (0.499 − 0.240i)12-s + (−0.281 + 1.23i)13-s + (1.27 − 0.390i)14-s + (−0.126 − 0.553i)15-s + (−0.726 − 0.911i)16-s + (0.919 − 0.442i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.174 + 0.984i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.174 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $0.174 + 0.984i$
Analytic conductor: \(7.85880\)
Root analytic conductor: \(2.80335\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{49} (15, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :5/2),\ 0.174 + 0.984i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.213656 - 0.179139i\)
\(L(\frac12)\) \(\approx\) \(0.213656 - 0.179139i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (64.4 + 112. i)T \)
good2 \( 1 + (1.68 - 7.37i)T + (-28.8 - 13.8i)T^{2} \)
3 \( 1 + (6.81 - 8.54i)T + (-54.0 - 236. i)T^{2} \)
5 \( 1 + (28.2 - 35.4i)T + (-695. - 3.04e3i)T^{2} \)
11 \( 1 + (-143. + 628. i)T + (-1.45e5 - 6.98e4i)T^{2} \)
13 \( 1 + (171. - 750. i)T + (-3.34e5 - 1.61e5i)T^{2} \)
17 \( 1 + (-1.09e3 + 527. i)T + (8.85e5 - 1.11e6i)T^{2} \)
19 \( 1 - 1.08e3T + 2.47e6T^{2} \)
23 \( 1 + (3.67e3 + 1.76e3i)T + (4.01e6 + 5.03e6i)T^{2} \)
29 \( 1 + (4.58e3 - 2.20e3i)T + (1.27e7 - 1.60e7i)T^{2} \)
31 \( 1 + 7.21e3T + 2.86e7T^{2} \)
37 \( 1 + (1.48e4 - 7.14e3i)T + (4.32e7 - 5.42e7i)T^{2} \)
41 \( 1 + (-8.60e3 + 1.07e4i)T + (-2.57e7 - 1.12e8i)T^{2} \)
43 \( 1 + (-6.71e3 - 8.41e3i)T + (-3.27e7 + 1.43e8i)T^{2} \)
47 \( 1 + (-372. + 1.63e3i)T + (-2.06e8 - 9.95e7i)T^{2} \)
53 \( 1 + (1.18e4 + 5.72e3i)T + (2.60e8 + 3.26e8i)T^{2} \)
59 \( 1 + (-7.90e3 - 9.91e3i)T + (-1.59e8 + 6.96e8i)T^{2} \)
61 \( 1 + (-2.05e4 + 9.90e3i)T + (5.26e8 - 6.60e8i)T^{2} \)
67 \( 1 + 3.72e4T + 1.35e9T^{2} \)
71 \( 1 + (605. + 291. i)T + (1.12e9 + 1.41e9i)T^{2} \)
73 \( 1 + (-6.59e3 - 2.88e4i)T + (-1.86e9 + 8.99e8i)T^{2} \)
79 \( 1 - 1.76e4T + 3.07e9T^{2} \)
83 \( 1 + (-1.68e4 - 7.39e4i)T + (-3.54e9 + 1.70e9i)T^{2} \)
89 \( 1 + (-8.87e3 - 3.88e4i)T + (-5.03e9 + 2.42e9i)T^{2} \)
97 \( 1 - 7.68e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.08839361339401437201107120892, −14.41935936834892512920553803715, −13.87174291141227071973244117083, −11.69784366182471851660938453374, −10.74966733433769103353000218320, −9.323799365803888704364576468255, −7.77837051241166126252844904610, −6.83863391262224484118052592964, −5.52636642271911100213761839855, −3.69649127456067652265882312761, 0.16391949764134634543355015684, 1.76800875231296144824404258870, 3.65928476741038548951480900437, 5.74728124513097433036429062574, 7.52086307591900926427726548110, 9.253998164588256383496574840671, 10.08139994461941190746760764307, 11.76559004968280756547093998828, 12.43032215760862213073683387718, 12.71223934911615367561483202071

Graph of the $Z$-function along the critical line