Properties

Label 2-7e2-49.15-c3-0-6
Degree $2$
Conductor $49$
Sign $0.670 + 0.742i$
Analytic cond. $2.89109$
Root an. cond. $1.70032$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.548 − 2.40i)2-s + (−3.32 + 4.16i)3-s + (1.73 + 0.835i)4-s + (9.40 − 11.7i)5-s + (8.18 + 10.2i)6-s + (12.9 − 13.2i)7-s + (15.2 − 19.1i)8-s + (−0.303 − 1.33i)9-s + (−23.1 − 29.0i)10-s + (−11.8 + 51.7i)11-s + (−9.24 + 4.45i)12-s + (11.7 − 51.3i)13-s + (−24.8 − 38.2i)14-s + (17.8 + 78.2i)15-s + (−27.9 − 35.0i)16-s + (−106. + 51.2i)17-s + ⋯
L(s)  = 1  + (0.193 − 0.849i)2-s + (−0.639 + 0.801i)3-s + (0.216 + 0.104i)4-s + (0.840 − 1.05i)5-s + (0.556 + 0.698i)6-s + (0.696 − 0.717i)7-s + (0.674 − 0.845i)8-s + (−0.0112 − 0.0492i)9-s + (−0.732 − 0.918i)10-s + (−0.324 + 1.41i)11-s + (−0.222 + 0.107i)12-s + (0.249 − 1.09i)13-s + (−0.474 − 0.730i)14-s + (0.307 + 1.34i)15-s + (−0.437 − 0.548i)16-s + (−1.51 + 0.731i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.670 + 0.742i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.670 + 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $0.670 + 0.742i$
Analytic conductor: \(2.89109\)
Root analytic conductor: \(1.70032\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{49} (15, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :3/2),\ 0.670 + 0.742i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.46038 - 0.649121i\)
\(L(\frac12)\) \(\approx\) \(1.46038 - 0.649121i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (-12.9 + 13.2i)T \)
good2 \( 1 + (-0.548 + 2.40i)T + (-7.20 - 3.47i)T^{2} \)
3 \( 1 + (3.32 - 4.16i)T + (-6.00 - 26.3i)T^{2} \)
5 \( 1 + (-9.40 + 11.7i)T + (-27.8 - 121. i)T^{2} \)
11 \( 1 + (11.8 - 51.7i)T + (-1.19e3 - 577. i)T^{2} \)
13 \( 1 + (-11.7 + 51.3i)T + (-1.97e3 - 953. i)T^{2} \)
17 \( 1 + (106. - 51.2i)T + (3.06e3 - 3.84e3i)T^{2} \)
19 \( 1 - 43.3T + 6.85e3T^{2} \)
23 \( 1 + (-97.1 - 46.7i)T + (7.58e3 + 9.51e3i)T^{2} \)
29 \( 1 + (218. - 105. i)T + (1.52e4 - 1.90e4i)T^{2} \)
31 \( 1 + 171.T + 2.97e4T^{2} \)
37 \( 1 + (30.5 - 14.7i)T + (3.15e4 - 3.96e4i)T^{2} \)
41 \( 1 + (-119. + 150. i)T + (-1.53e4 - 6.71e4i)T^{2} \)
43 \( 1 + (-191. - 239. i)T + (-1.76e4 + 7.75e4i)T^{2} \)
47 \( 1 + (73.0 - 319. i)T + (-9.35e4 - 4.50e4i)T^{2} \)
53 \( 1 + (40.5 + 19.5i)T + (9.28e4 + 1.16e5i)T^{2} \)
59 \( 1 + (-185. - 232. i)T + (-4.57e4 + 2.00e5i)T^{2} \)
61 \( 1 + (-22.2 + 10.7i)T + (1.41e5 - 1.77e5i)T^{2} \)
67 \( 1 - 269.T + 3.00e5T^{2} \)
71 \( 1 + (663. + 319. i)T + (2.23e5 + 2.79e5i)T^{2} \)
73 \( 1 + (-19.9 - 87.5i)T + (-3.50e5 + 1.68e5i)T^{2} \)
79 \( 1 - 162.T + 4.93e5T^{2} \)
83 \( 1 + (65.3 + 286. i)T + (-5.15e5 + 2.48e5i)T^{2} \)
89 \( 1 + (-61.1 - 267. i)T + (-6.35e5 + 3.05e5i)T^{2} \)
97 \( 1 + 505.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.14056418872877926130372174934, −13.21686289197974986517352633902, −12.78137679163615977203538548036, −11.14293733438683023828883084068, −10.52972014131105981353905135025, −9.410874433353763666225205319126, −7.47259069621776645715029755068, −5.29974406958337607031447516052, −4.29725492548471713743754634163, −1.70763359310699212531912885351, 2.16481855343906270035138184990, 5.51047773748220430345714556069, 6.35649021178457007708675028736, 7.22312309108438656579720409574, 8.964052784491981511014093558041, 11.14954712983071849577763916495, 11.34986494685058681716735438696, 13.36443600216424909025239476934, 14.18135538742158009464800763155, 15.17579791415236207504130424137

Graph of the $Z$-function along the critical line