Properties

Label 2-7e2-49.11-c9-0-10
Degree $2$
Conductor $49$
Sign $-0.831 - 0.555i$
Analytic cond. $25.2367$
Root an. cond. $5.02361$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−24.7 + 22.9i)2-s + (116. − 17.5i)3-s + (46.8 − 624. i)4-s + (−217. + 554. i)5-s + (−2.47e3 + 3.10e3i)6-s + (5.30e3 − 3.48e3i)7-s + (2.41e3 + 3.02e3i)8-s + (−5.59e3 + 1.72e3i)9-s + (−7.34e3 − 1.87e4i)10-s + (−1.88e4 − 5.81e3i)11-s + (−5.50e3 − 7.34e4i)12-s + (2.00e3 + 8.77e3i)13-s + (−5.11e4 + 2.08e5i)14-s + (−1.55e4 + 6.82e4i)15-s + (1.88e5 + 2.83e4i)16-s + (5.48e4 − 3.74e4i)17-s + ⋯
L(s)  = 1  + (−1.09 + 1.01i)2-s + (0.828 − 0.124i)3-s + (0.0914 − 1.22i)4-s + (−0.155 + 0.396i)5-s + (−0.779 + 0.977i)6-s + (0.835 − 0.549i)7-s + (0.208 + 0.261i)8-s + (−0.284 + 0.0876i)9-s + (−0.232 − 0.591i)10-s + (−0.388 − 0.119i)11-s + (−0.0766 − 1.02i)12-s + (0.0194 + 0.0852i)13-s + (−0.356 + 1.44i)14-s + (−0.0794 + 0.348i)15-s + (0.717 + 0.108i)16-s + (0.159 − 0.108i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.831 - 0.555i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.831 - 0.555i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $-0.831 - 0.555i$
Analytic conductor: \(25.2367\)
Root analytic conductor: \(5.02361\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{49} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :9/2),\ -0.831 - 0.555i)\)

Particular Values

\(L(5)\) \(\approx\) \(0.321887 + 1.06084i\)
\(L(\frac12)\) \(\approx\) \(0.321887 + 1.06084i\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (-5.30e3 + 3.48e3i)T \)
good2 \( 1 + (24.7 - 22.9i)T + (38.2 - 510. i)T^{2} \)
3 \( 1 + (-116. + 17.5i)T + (1.88e4 - 5.80e3i)T^{2} \)
5 \( 1 + (217. - 554. i)T + (-1.43e6 - 1.32e6i)T^{2} \)
11 \( 1 + (1.88e4 + 5.81e3i)T + (1.94e9 + 1.32e9i)T^{2} \)
13 \( 1 + (-2.00e3 - 8.77e3i)T + (-9.55e9 + 4.60e9i)T^{2} \)
17 \( 1 + (-5.48e4 + 3.74e4i)T + (4.33e10 - 1.10e11i)T^{2} \)
19 \( 1 + (-5.02e5 - 8.70e5i)T + (-1.61e11 + 2.79e11i)T^{2} \)
23 \( 1 + (-1.25e6 - 8.58e5i)T + (6.58e11 + 1.67e12i)T^{2} \)
29 \( 1 + (5.67e6 + 2.73e6i)T + (9.04e12 + 1.13e13i)T^{2} \)
31 \( 1 + (5.78e5 - 1.00e6i)T + (-1.32e13 - 2.28e13i)T^{2} \)
37 \( 1 + (-9.64e5 - 1.28e7i)T + (-1.28e14 + 1.93e13i)T^{2} \)
41 \( 1 + (5.45e6 + 6.83e6i)T + (-7.28e13 + 3.19e14i)T^{2} \)
43 \( 1 + (1.62e7 - 2.04e7i)T + (-1.11e14 - 4.89e14i)T^{2} \)
47 \( 1 + (-1.38e7 + 1.28e7i)T + (8.36e13 - 1.11e15i)T^{2} \)
53 \( 1 + (3.91e6 - 5.22e7i)T + (-3.26e15 - 4.91e14i)T^{2} \)
59 \( 1 + (1.74e7 + 4.45e7i)T + (-6.35e15 + 5.89e15i)T^{2} \)
61 \( 1 + (-1.25e7 - 1.67e8i)T + (-1.15e16 + 1.74e15i)T^{2} \)
67 \( 1 + (1.18e8 - 2.05e8i)T + (-1.36e16 - 2.35e16i)T^{2} \)
71 \( 1 + (9.27e7 - 4.46e7i)T + (2.85e16 - 3.58e16i)T^{2} \)
73 \( 1 + (-2.53e6 - 2.35e6i)T + (4.39e15 + 5.87e16i)T^{2} \)
79 \( 1 + (1.52e6 + 2.64e6i)T + (-5.99e16 + 1.03e17i)T^{2} \)
83 \( 1 + (-1.54e6 + 6.78e6i)T + (-1.68e17 - 8.11e16i)T^{2} \)
89 \( 1 + (-2.80e8 + 8.64e7i)T + (2.89e17 - 1.97e17i)T^{2} \)
97 \( 1 - 1.44e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.55019475366964071523197658064, −13.41819934147411926660336943849, −11.47218858670723971283987005750, −10.15927680835687032373257663641, −8.929604652466425694000043437230, −7.87016843172582785136088760873, −7.33134545677537959019829686901, −5.57081625818361121733409849035, −3.35599872084430214663125988128, −1.36561882531670557608670893096, 0.50761876306596864116920772767, 2.04226194506672879340150354224, 3.11926760662664877760975782062, 5.14981164914268946729115817435, 7.67478174467340452442508950602, 8.767448878758107305580580835835, 9.236307674235427798743650166941, 10.80115214729110553180722026769, 11.66130913815332154214574560117, 12.88396434539021979249002152096

Graph of the $Z$-function along the critical line