Properties

Label 2-7e2-1.1-c9-0-24
Degree $2$
Conductor $49$
Sign $-1$
Analytic cond. $25.2367$
Root an. cond. $5.02361$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 38.8·2-s − 227.·3-s + 999.·4-s + 325.·5-s − 8.84e3·6-s + 1.89e4·8-s + 3.20e4·9-s + 1.26e4·10-s − 4.89e4·11-s − 2.27e5·12-s − 1.08e5·13-s − 7.40e4·15-s + 2.24e5·16-s − 2.28e5·17-s + 1.24e6·18-s − 5.68e4·19-s + 3.25e5·20-s − 1.90e6·22-s − 1.44e6·23-s − 4.30e6·24-s − 1.84e6·25-s − 4.22e6·26-s − 2.81e6·27-s − 2.66e5·29-s − 2.87e6·30-s + 1.61e5·31-s − 9.56e5·32-s + ⋯
L(s)  = 1  + 1.71·2-s − 1.62·3-s + 1.95·4-s + 0.232·5-s − 2.78·6-s + 1.63·8-s + 1.62·9-s + 0.400·10-s − 1.00·11-s − 3.16·12-s − 1.05·13-s − 0.377·15-s + 0.858·16-s − 0.663·17-s + 2.79·18-s − 0.100·19-s + 0.454·20-s − 1.73·22-s − 1.07·23-s − 2.65·24-s − 0.945·25-s − 1.81·26-s − 1.01·27-s − 0.0699·29-s − 0.648·30-s + 0.0314·31-s − 0.161·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $-1$
Analytic conductor: \(25.2367\)
Root analytic conductor: \(5.02361\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 49,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 - 38.8T + 512T^{2} \)
3 \( 1 + 227.T + 1.96e4T^{2} \)
5 \( 1 - 325.T + 1.95e6T^{2} \)
11 \( 1 + 4.89e4T + 2.35e9T^{2} \)
13 \( 1 + 1.08e5T + 1.06e10T^{2} \)
17 \( 1 + 2.28e5T + 1.18e11T^{2} \)
19 \( 1 + 5.68e4T + 3.22e11T^{2} \)
23 \( 1 + 1.44e6T + 1.80e12T^{2} \)
29 \( 1 + 2.66e5T + 1.45e13T^{2} \)
31 \( 1 - 1.61e5T + 2.64e13T^{2} \)
37 \( 1 + 6.08e6T + 1.29e14T^{2} \)
41 \( 1 - 1.73e7T + 3.27e14T^{2} \)
43 \( 1 - 1.34e7T + 5.02e14T^{2} \)
47 \( 1 - 1.91e6T + 1.11e15T^{2} \)
53 \( 1 - 1.00e8T + 3.29e15T^{2} \)
59 \( 1 + 1.56e8T + 8.66e15T^{2} \)
61 \( 1 - 7.47e7T + 1.16e16T^{2} \)
67 \( 1 - 1.22e8T + 2.72e16T^{2} \)
71 \( 1 + 1.47e8T + 4.58e16T^{2} \)
73 \( 1 - 3.56e8T + 5.88e16T^{2} \)
79 \( 1 + 5.62e8T + 1.19e17T^{2} \)
83 \( 1 + 2.10e8T + 1.86e17T^{2} \)
89 \( 1 + 5.48e8T + 3.50e17T^{2} \)
97 \( 1 - 9.75e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.86653739161800064732824739463, −12.13262633002850609458602090751, −11.20382147013038977754565572636, −10.15314350045654034017229356374, −7.30835195316444990636444078427, −6.07510977892417589526343411024, −5.30088719305749675611085789093, −4.29459726500826742135392331777, −2.28620735437153240085037496413, 0, 2.28620735437153240085037496413, 4.29459726500826742135392331777, 5.30088719305749675611085789093, 6.07510977892417589526343411024, 7.30835195316444990636444078427, 10.15314350045654034017229356374, 11.20382147013038977754565572636, 12.13262633002850609458602090751, 12.86653739161800064732824739463

Graph of the $Z$-function along the critical line