Properties

Label 2-7e2-1.1-c9-0-12
Degree $2$
Conductor $49$
Sign $1$
Analytic cond. $25.2367$
Root an. cond. $5.02361$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.8·2-s + 195.·3-s − 393.·4-s − 200.·5-s + 2.13e3·6-s − 9.86e3·8-s + 1.86e4·9-s − 2.18e3·10-s + 6.38e4·11-s − 7.70e4·12-s + 1.64e5·13-s − 3.93e4·15-s + 9.39e4·16-s + 3.62e5·17-s + 2.03e5·18-s + 4.36e5·19-s + 7.89e4·20-s + 6.95e5·22-s + 9.18e5·23-s − 1.93e6·24-s − 1.91e6·25-s + 1.79e6·26-s − 2.00e5·27-s − 3.68e6·29-s − 4.28e5·30-s − 3.47e6·31-s + 6.07e6·32-s + ⋯
L(s)  = 1  + 0.481·2-s + 1.39·3-s − 0.768·4-s − 0.143·5-s + 0.671·6-s − 0.851·8-s + 0.948·9-s − 0.0691·10-s + 1.31·11-s − 1.07·12-s + 1.59·13-s − 0.200·15-s + 0.358·16-s + 1.05·17-s + 0.456·18-s + 0.768·19-s + 0.110·20-s + 0.633·22-s + 0.684·23-s − 1.18·24-s − 0.979·25-s + 0.769·26-s − 0.0724·27-s − 0.967·29-s − 0.0965·30-s − 0.676·31-s + 1.02·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $1$
Analytic conductor: \(25.2367\)
Root analytic conductor: \(5.02361\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(3.623689912\)
\(L(\frac12)\) \(\approx\) \(3.623689912\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 - 10.8T + 512T^{2} \)
3 \( 1 - 195.T + 1.96e4T^{2} \)
5 \( 1 + 200.T + 1.95e6T^{2} \)
11 \( 1 - 6.38e4T + 2.35e9T^{2} \)
13 \( 1 - 1.64e5T + 1.06e10T^{2} \)
17 \( 1 - 3.62e5T + 1.18e11T^{2} \)
19 \( 1 - 4.36e5T + 3.22e11T^{2} \)
23 \( 1 - 9.18e5T + 1.80e12T^{2} \)
29 \( 1 + 3.68e6T + 1.45e13T^{2} \)
31 \( 1 + 3.47e6T + 2.64e13T^{2} \)
37 \( 1 - 1.88e7T + 1.29e14T^{2} \)
41 \( 1 + 2.40e6T + 3.27e14T^{2} \)
43 \( 1 + 1.25e7T + 5.02e14T^{2} \)
47 \( 1 - 5.54e7T + 1.11e15T^{2} \)
53 \( 1 + 9.26e7T + 3.29e15T^{2} \)
59 \( 1 - 2.52e7T + 8.66e15T^{2} \)
61 \( 1 + 6.93e7T + 1.16e16T^{2} \)
67 \( 1 + 2.33e7T + 2.72e16T^{2} \)
71 \( 1 + 1.06e8T + 4.58e16T^{2} \)
73 \( 1 - 2.10e8T + 5.88e16T^{2} \)
79 \( 1 + 1.49e5T + 1.19e17T^{2} \)
83 \( 1 + 5.21e8T + 1.86e17T^{2} \)
89 \( 1 + 2.98e8T + 3.50e17T^{2} \)
97 \( 1 - 8.95e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.85038325148074687397146500184, −12.93307309968326163297427450173, −11.51729335698713163982257476891, −9.549887998959109087550629742368, −8.900783188319310839875022839952, −7.76996753154040126226508251607, −5.88279940851929867355369713977, −3.97469653617231288967269275410, −3.31687557822886527401103184325, −1.25452655554550517908712077739, 1.25452655554550517908712077739, 3.31687557822886527401103184325, 3.97469653617231288967269275410, 5.88279940851929867355369713977, 7.76996753154040126226508251607, 8.900783188319310839875022839952, 9.549887998959109087550629742368, 11.51729335698713163982257476891, 12.93307309968326163297427450173, 13.85038325148074687397146500184

Graph of the $Z$-function along the critical line