| L(s) = 1 | + 10.8·2-s + 195.·3-s − 393.·4-s − 200.·5-s + 2.13e3·6-s − 9.86e3·8-s + 1.86e4·9-s − 2.18e3·10-s + 6.38e4·11-s − 7.70e4·12-s + 1.64e5·13-s − 3.93e4·15-s + 9.39e4·16-s + 3.62e5·17-s + 2.03e5·18-s + 4.36e5·19-s + 7.89e4·20-s + 6.95e5·22-s + 9.18e5·23-s − 1.93e6·24-s − 1.91e6·25-s + 1.79e6·26-s − 2.00e5·27-s − 3.68e6·29-s − 4.28e5·30-s − 3.47e6·31-s + 6.07e6·32-s + ⋯ |
| L(s) = 1 | + 0.481·2-s + 1.39·3-s − 0.768·4-s − 0.143·5-s + 0.671·6-s − 0.851·8-s + 0.948·9-s − 0.0691·10-s + 1.31·11-s − 1.07·12-s + 1.59·13-s − 0.200·15-s + 0.358·16-s + 1.05·17-s + 0.456·18-s + 0.768·19-s + 0.110·20-s + 0.633·22-s + 0.684·23-s − 1.18·24-s − 0.979·25-s + 0.769·26-s − 0.0724·27-s − 0.967·29-s − 0.0965·30-s − 0.676·31-s + 1.02·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(5)\) |
\(\approx\) |
\(3.623689912\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.623689912\) |
| \(L(\frac{11}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| good | 2 | \( 1 - 10.8T + 512T^{2} \) |
| 3 | \( 1 - 195.T + 1.96e4T^{2} \) |
| 5 | \( 1 + 200.T + 1.95e6T^{2} \) |
| 11 | \( 1 - 6.38e4T + 2.35e9T^{2} \) |
| 13 | \( 1 - 1.64e5T + 1.06e10T^{2} \) |
| 17 | \( 1 - 3.62e5T + 1.18e11T^{2} \) |
| 19 | \( 1 - 4.36e5T + 3.22e11T^{2} \) |
| 23 | \( 1 - 9.18e5T + 1.80e12T^{2} \) |
| 29 | \( 1 + 3.68e6T + 1.45e13T^{2} \) |
| 31 | \( 1 + 3.47e6T + 2.64e13T^{2} \) |
| 37 | \( 1 - 1.88e7T + 1.29e14T^{2} \) |
| 41 | \( 1 + 2.40e6T + 3.27e14T^{2} \) |
| 43 | \( 1 + 1.25e7T + 5.02e14T^{2} \) |
| 47 | \( 1 - 5.54e7T + 1.11e15T^{2} \) |
| 53 | \( 1 + 9.26e7T + 3.29e15T^{2} \) |
| 59 | \( 1 - 2.52e7T + 8.66e15T^{2} \) |
| 61 | \( 1 + 6.93e7T + 1.16e16T^{2} \) |
| 67 | \( 1 + 2.33e7T + 2.72e16T^{2} \) |
| 71 | \( 1 + 1.06e8T + 4.58e16T^{2} \) |
| 73 | \( 1 - 2.10e8T + 5.88e16T^{2} \) |
| 79 | \( 1 + 1.49e5T + 1.19e17T^{2} \) |
| 83 | \( 1 + 5.21e8T + 1.86e17T^{2} \) |
| 89 | \( 1 + 2.98e8T + 3.50e17T^{2} \) |
| 97 | \( 1 - 8.95e8T + 7.60e17T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.85038325148074687397146500184, −12.93307309968326163297427450173, −11.51729335698713163982257476891, −9.549887998959109087550629742368, −8.900783188319310839875022839952, −7.76996753154040126226508251607, −5.88279940851929867355369713977, −3.97469653617231288967269275410, −3.31687557822886527401103184325, −1.25452655554550517908712077739,
1.25452655554550517908712077739, 3.31687557822886527401103184325, 3.97469653617231288967269275410, 5.88279940851929867355369713977, 7.76996753154040126226508251607, 8.900783188319310839875022839952, 9.549887998959109087550629742368, 11.51729335698713163982257476891, 12.93307309968326163297427450173, 13.85038325148074687397146500184