Properties

Label 2-7e2-1.1-c5-0-3
Degree $2$
Conductor $49$
Sign $1$
Analytic cond. $7.85880$
Root an. cond. $2.80335$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10·2-s + 14·3-s + 68·4-s + 56·5-s − 140·6-s − 360·8-s − 47·9-s − 560·10-s + 232·11-s + 952·12-s + 140·13-s + 784·15-s + 1.42e3·16-s + 1.72e3·17-s + 470·18-s + 98·19-s + 3.80e3·20-s − 2.32e3·22-s + 1.82e3·23-s − 5.04e3·24-s + 11·25-s − 1.40e3·26-s − 4.06e3·27-s + 3.41e3·29-s − 7.84e3·30-s + 7.64e3·31-s − 2.72e3·32-s + ⋯
L(s)  = 1  − 1.76·2-s + 0.898·3-s + 17/8·4-s + 1.00·5-s − 1.58·6-s − 1.98·8-s − 0.193·9-s − 1.77·10-s + 0.578·11-s + 1.90·12-s + 0.229·13-s + 0.899·15-s + 1.39·16-s + 1.44·17-s + 0.341·18-s + 0.0622·19-s + 2.12·20-s − 1.02·22-s + 0.718·23-s − 1.78·24-s + 0.00351·25-s − 0.406·26-s − 1.07·27-s + 0.754·29-s − 1.59·30-s + 1.42·31-s − 0.469·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $1$
Analytic conductor: \(7.85880\)
Root analytic conductor: \(2.80335\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.196461872\)
\(L(\frac12)\) \(\approx\) \(1.196461872\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + 5 p T + p^{5} T^{2} \)
3 \( 1 - 14 T + p^{5} T^{2} \)
5 \( 1 - 56 T + p^{5} T^{2} \)
11 \( 1 - 232 T + p^{5} T^{2} \)
13 \( 1 - 140 T + p^{5} T^{2} \)
17 \( 1 - 1722 T + p^{5} T^{2} \)
19 \( 1 - 98 T + p^{5} T^{2} \)
23 \( 1 - 1824 T + p^{5} T^{2} \)
29 \( 1 - 3418 T + p^{5} T^{2} \)
31 \( 1 - 7644 T + p^{5} T^{2} \)
37 \( 1 + 10398 T + p^{5} T^{2} \)
41 \( 1 - 17962 T + p^{5} T^{2} \)
43 \( 1 - 10880 T + p^{5} T^{2} \)
47 \( 1 + 9324 T + p^{5} T^{2} \)
53 \( 1 - 2262 T + p^{5} T^{2} \)
59 \( 1 - 2730 T + p^{5} T^{2} \)
61 \( 1 + 25648 T + p^{5} T^{2} \)
67 \( 1 + 48404 T + p^{5} T^{2} \)
71 \( 1 + 58560 T + p^{5} T^{2} \)
73 \( 1 + 68082 T + p^{5} T^{2} \)
79 \( 1 - 31784 T + p^{5} T^{2} \)
83 \( 1 - 20538 T + p^{5} T^{2} \)
89 \( 1 - 50582 T + p^{5} T^{2} \)
97 \( 1 - 58506 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.69346113629062205792820335152, −13.71783649049906696937209348151, −11.91810441229952272733970212295, −10.45889534209058318498975779880, −9.520257264082181074499874446997, −8.739051791920234788535013696234, −7.61520329205596700571720150594, −6.09450485603994223222378877207, −2.80855483746860376476991668666, −1.30752165276660555124216235380, 1.30752165276660555124216235380, 2.80855483746860376476991668666, 6.09450485603994223222378877207, 7.61520329205596700571720150594, 8.739051791920234788535013696234, 9.520257264082181074499874446997, 10.45889534209058318498975779880, 11.91810441229952272733970212295, 13.71783649049906696937209348151, 14.69346113629062205792820335152

Graph of the $Z$-function along the critical line