Properties

Label 2-7e2-1.1-c21-0-12
Degree $2$
Conductor $49$
Sign $1$
Analytic cond. $136.943$
Root an. cond. $11.7023$
Motivic weight $21$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 288·2-s + 1.28e5·3-s − 2.01e6·4-s − 2.16e7·5-s − 3.71e7·6-s + 1.18e9·8-s + 6.14e9·9-s + 6.23e9·10-s − 9.47e10·11-s − 2.59e11·12-s + 8.06e10·13-s − 2.78e12·15-s + 3.88e12·16-s − 3.05e12·17-s − 1.76e12·18-s + 7.92e12·19-s + 4.35e13·20-s + 2.72e13·22-s − 7.38e13·23-s + 1.52e14·24-s − 8.50e12·25-s − 2.32e13·26-s − 5.56e14·27-s − 4.25e15·29-s + 8.03e14·30-s − 1.90e15·31-s − 3.60e15·32-s + ⋯
L(s)  = 1  − 0.198·2-s + 1.25·3-s − 0.960·4-s − 0.991·5-s − 0.250·6-s + 0.389·8-s + 0.587·9-s + 0.197·10-s − 1.10·11-s − 1.20·12-s + 0.162·13-s − 1.24·15-s + 0.882·16-s − 0.367·17-s − 0.116·18-s + 0.296·19-s + 0.951·20-s + 0.218·22-s − 0.371·23-s + 0.491·24-s − 0.0178·25-s − 0.0322·26-s − 0.520·27-s − 1.87·29-s + 0.248·30-s − 0.416·31-s − 0.565·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $1$
Analytic conductor: \(136.943\)
Root analytic conductor: \(11.7023\)
Motivic weight: \(21\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :21/2),\ 1)\)

Particular Values

\(L(11)\) \(\approx\) \(1.005861844\)
\(L(\frac12)\) \(\approx\) \(1.005861844\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + 9 p^{5} T + p^{21} T^{2} \)
3 \( 1 - 4772 p^{3} T + p^{21} T^{2} \)
5 \( 1 + 865638 p^{2} T + p^{21} T^{2} \)
11 \( 1 + 94724929188 T + p^{21} T^{2} \)
13 \( 1 - 6201676138 p T + p^{21} T^{2} \)
17 \( 1 + 179546054706 p T + p^{21} T^{2} \)
19 \( 1 - 416883597460 p T + p^{21} T^{2} \)
23 \( 1 + 73845437470344 T + p^{21} T^{2} \)
29 \( 1 + 4253031736469010 T + p^{21} T^{2} \)
31 \( 1 + 1900541176310432 T + p^{21} T^{2} \)
37 \( 1 - 22191429912035222 T + p^{21} T^{2} \)
41 \( 1 - 20622803144546358 T + p^{21} T^{2} \)
43 \( 1 + 193605854685795844 T + p^{21} T^{2} \)
47 \( 1 + 146960504315611632 T + p^{21} T^{2} \)
53 \( 1 - 2038267110310687206 T + p^{21} T^{2} \)
59 \( 1 - 5975882742742352820 T + p^{21} T^{2} \)
61 \( 1 + 6190617154478149262 T + p^{21} T^{2} \)
67 \( 1 - 16961315295446680052 T + p^{21} T^{2} \)
71 \( 1 + 5632758963952293528 T + p^{21} T^{2} \)
73 \( 1 - 43284759511102937494 T + p^{21} T^{2} \)
79 \( 1 + 51264938664949064560 T + p^{21} T^{2} \)
83 \( 1 + 48911854702961049156 T + p^{21} T^{2} \)
89 \( 1 - \)\(50\!\cdots\!30\)\( T + p^{21} T^{2} \)
97 \( 1 + \)\(80\!\cdots\!82\)\( T + p^{21} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.37892421208813126011940346077, −9.986656989511956973220452843249, −8.958616782966868885626062985606, −8.094218931444054281133026508008, −7.50902899829881004810291007066, −5.38866157041418963427654463106, −4.07838788535093264894691765572, −3.35948095517930697772030675914, −2.05584237510815072412726816380, −0.42599942385817125931319169735, 0.42599942385817125931319169735, 2.05584237510815072412726816380, 3.35948095517930697772030675914, 4.07838788535093264894691765572, 5.38866157041418963427654463106, 7.50902899829881004810291007066, 8.094218931444054281133026508008, 8.958616782966868885626062985606, 9.986656989511956973220452843249, 11.37892421208813126011940346077

Graph of the $Z$-function along the critical line