L(s) = 1 | + (−0.831 + 0.831i)2-s + (0.763 − 1.84i)3-s − 0.381i·4-s + (0.896 + 2.16i)6-s + (0.431 − 0.178i)7-s + (−0.513 − 0.513i)8-s + (−2.10 − 2.10i)9-s + (−0.703 − 0.291i)12-s + (−0.210 + 0.507i)14-s + 1.23·16-s + (−0.309 − 0.951i)17-s + 3.49·18-s − 0.930i·21-s + (−1.33 + 0.554i)24-s + (0.707 + 0.707i)25-s + ⋯ |
L(s) = 1 | + (−0.831 + 0.831i)2-s + (0.763 − 1.84i)3-s − 0.381i·4-s + (0.896 + 2.16i)6-s + (0.431 − 0.178i)7-s + (−0.513 − 0.513i)8-s + (−2.10 − 2.10i)9-s + (−0.703 − 0.291i)12-s + (−0.210 + 0.507i)14-s + 1.23·16-s + (−0.309 − 0.951i)17-s + 3.49·18-s − 0.930i·21-s + (−1.33 + 0.554i)24-s + (0.707 + 0.707i)25-s + ⋯ |
Λ(s)=(=(799s/2ΓC(s)L(s)(0.380+0.924i)Λ(1−s)
Λ(s)=(=(799s/2ΓC(s)L(s)(0.380+0.924i)Λ(1−s)
Degree: |
2 |
Conductor: |
799
= 17⋅47
|
Sign: |
0.380+0.924i
|
Analytic conductor: |
0.398752 |
Root analytic conductor: |
0.631468 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ799(93,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 799, ( :0), 0.380+0.924i)
|
Particular Values
L(21) |
≈ |
0.7563757561 |
L(21) |
≈ |
0.7563757561 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 17 | 1+(0.309+0.951i)T |
| 47 | 1+iT |
good | 2 | 1+(0.831−0.831i)T−iT2 |
| 3 | 1+(−0.763+1.84i)T+(−0.707−0.707i)T2 |
| 5 | 1+(−0.707−0.707i)T2 |
| 7 | 1+(−0.431+0.178i)T+(0.707−0.707i)T2 |
| 11 | 1+(0.707−0.707i)T2 |
| 13 | 1+T2 |
| 19 | 1+iT2 |
| 23 | 1+(0.707−0.707i)T2 |
| 29 | 1+(−0.707−0.707i)T2 |
| 31 | 1+(0.707+0.707i)T2 |
| 37 | 1+(0.0600−0.144i)T+(−0.707−0.707i)T2 |
| 41 | 1+(−0.707+0.707i)T2 |
| 43 | 1−iT2 |
| 53 | 1+(−1.39+1.39i)T−iT2 |
| 59 | 1+(−1.14−1.14i)T+iT2 |
| 61 | 1+(−0.965+0.399i)T+(0.707−0.707i)T2 |
| 67 | 1−T2 |
| 71 | 1+(0.581−1.40i)T+(−0.707−0.707i)T2 |
| 73 | 1+(−0.707−0.707i)T2 |
| 79 | 1+(0.581+1.40i)T+(−0.707+0.707i)T2 |
| 83 | 1+(1−i)T−iT2 |
| 89 | 1−1.17iT−T2 |
| 97 | 1+(−1.57−0.652i)T+(0.707+0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.894489761527655202307079627021, −8.849007342980339223311596788531, −8.559719564237631442727363349293, −7.60983983031758183388215094648, −7.13408209796798926846644936894, −6.53717174380604937073566680594, −5.44894200584658576524108993443, −3.51776092280825576346281535218, −2.40324343431032421921264042041, −0.983077308087567981076856614977,
2.09975073747178200638069797952, 3.03746057365108343043860821507, 4.08743749776862720098052670117, 5.01365341296172298303341089309, 5.96144313812804438660231382226, 7.84853695305949174057369749948, 8.712281745340990767208863974441, 8.911480319403287142674071878136, 10.03330669101625114048153909436, 10.31096306975160726622657191838