Properties

Label 2-799-799.798-c0-0-8
Degree $2$
Conductor $799$
Sign $1$
Analytic cond. $0.398752$
Root an. cond. $0.631468$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41·2-s + 1.00·4-s + 0.765·5-s + 9-s + 1.08·10-s − 1.84·11-s − 0.999·16-s − 17-s + 1.41·18-s + 0.765·20-s − 2.61·22-s − 0.765·23-s − 0.414·25-s + 1.84·29-s + 1.84·31-s − 1.41·32-s − 1.41·34-s + 1.00·36-s − 0.765·41-s − 1.84·44-s + 0.765·45-s − 1.08·46-s − 47-s + 49-s − 0.585·50-s − 1.41·55-s + 2.61·58-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.00·4-s + 0.765·5-s + 9-s + 1.08·10-s − 1.84·11-s − 0.999·16-s − 17-s + 1.41·18-s + 0.765·20-s − 2.61·22-s − 0.765·23-s − 0.414·25-s + 1.84·29-s + 1.84·31-s − 1.41·32-s − 1.41·34-s + 1.00·36-s − 0.765·41-s − 1.84·44-s + 0.765·45-s − 1.08·46-s − 47-s + 49-s − 0.585·50-s − 1.41·55-s + 2.61·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 799 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 799 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(799\)    =    \(17 \cdot 47\)
Sign: $1$
Analytic conductor: \(0.398752\)
Root analytic conductor: \(0.631468\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{799} (798, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 799,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.995966104\)
\(L(\frac12)\) \(\approx\) \(1.995966104\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 + T \)
47 \( 1 + T \)
good2 \( 1 - 1.41T + T^{2} \)
3 \( 1 - T^{2} \)
5 \( 1 - 0.765T + T^{2} \)
7 \( 1 - T^{2} \)
11 \( 1 + 1.84T + T^{2} \)
13 \( 1 - T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 + 0.765T + T^{2} \)
29 \( 1 - 1.84T + T^{2} \)
31 \( 1 - 1.84T + T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + 0.765T + T^{2} \)
43 \( 1 - T^{2} \)
53 \( 1 + T^{2} \)
59 \( 1 + 1.41T + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + 1.84T + T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 + T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.28126603573702172802509605406, −10.09941779554752862531985723436, −8.731058747817948214286028450529, −7.72693161349309903227757583708, −6.60829086478723382339647557229, −5.96528377826056832212391592486, −4.89421399152344674744751737189, −4.44949415584839133562224720574, −2.99699198857455842145849223882, −2.14037838691091422830575316899, 2.14037838691091422830575316899, 2.99699198857455842145849223882, 4.44949415584839133562224720574, 4.89421399152344674744751737189, 5.96528377826056832212391592486, 6.60829086478723382339647557229, 7.72693161349309903227757583708, 8.731058747817948214286028450529, 10.09941779554752862531985723436, 10.28126603573702172802509605406

Graph of the $Z$-function along the critical line