L(s) = 1 | − 0.618i·2-s + (−1.39 + 1.39i)3-s + 0.618·4-s + (0.863 + 0.863i)6-s + (−1.26 − 1.26i)7-s − i·8-s − 2.90i·9-s + (−0.863 + 0.863i)12-s + (−0.778 + 0.778i)14-s + (−0.809 − 0.587i)17-s − 1.79·18-s + 3.52·21-s + (1.39 + 1.39i)24-s − i·25-s + (2.65 + 2.65i)27-s + (−0.778 − 0.778i)28-s + ⋯ |
L(s) = 1 | − 0.618i·2-s + (−1.39 + 1.39i)3-s + 0.618·4-s + (0.863 + 0.863i)6-s + (−1.26 − 1.26i)7-s − i·8-s − 2.90i·9-s + (−0.863 + 0.863i)12-s + (−0.778 + 0.778i)14-s + (−0.809 − 0.587i)17-s − 1.79·18-s + 3.52·21-s + (1.39 + 1.39i)24-s − i·25-s + (2.65 + 2.65i)27-s + (−0.778 − 0.778i)28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 799 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0345 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 799 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0345 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5189298182\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5189298182\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 + (0.809 + 0.587i)T \) |
| 47 | \( 1 + T \) |
good | 2 | \( 1 + 0.618iT - T^{2} \) |
| 3 | \( 1 + (1.39 - 1.39i)T - iT^{2} \) |
| 5 | \( 1 + iT^{2} \) |
| 7 | \( 1 + (1.26 + 1.26i)T + iT^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 + iT^{2} \) |
| 31 | \( 1 + iT^{2} \) |
| 37 | \( 1 + (-1.39 + 1.39i)T - iT^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 53 | \( 1 - 1.90iT - T^{2} \) |
| 59 | \( 1 + 0.618iT - T^{2} \) |
| 61 | \( 1 + (0.642 + 0.642i)T + iT^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.221 - 0.221i)T - iT^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + (0.221 + 0.221i)T + iT^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - 0.618T + T^{2} \) |
| 97 | \( 1 + (-0.642 + 0.642i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48200864939980629698108459808, −9.758183804580998022164819647660, −9.264538702161785770244449819318, −7.32599039108412008074659300530, −6.50083124556308574273904749538, −6.01307368929553089493759453885, −4.56047503026960774596711923914, −3.93264964012453810592051906430, −3.00094901969608208388685868842, −0.60800463655263510644104495712,
1.81084080736197655401449178659, 2.81346149624886806405363955457, 5.03508037943819813876962655512, 5.84162491915296000265316766265, 6.37722240273964005316283525427, 6.84297995113939007710331975539, 7.81756446824782878727755370523, 8.661325433397868480039381897762, 9.969055956842267580343363363345, 11.02954928689355618487886980649