Properties

Label 2-798-133.81-c1-0-4
Degree $2$
Conductor $798$
Sign $0.385 - 0.922i$
Analytic cond. $6.37206$
Root an. cond. $2.52429$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.766 − 0.642i)2-s + (0.766 + 0.642i)3-s + (0.173 + 0.984i)4-s + (−0.367 + 2.08i)5-s + (−0.173 − 0.984i)6-s + (−0.5 − 2.59i)7-s + (0.500 − 0.866i)8-s + (0.173 + 0.984i)9-s + (1.62 − 1.36i)10-s + (−0.0542 − 0.0940i)11-s + (−0.500 + 0.866i)12-s + (0.542 + 3.07i)13-s + (−1.28 + 2.31i)14-s + (−1.62 + 1.36i)15-s + (−0.939 + 0.342i)16-s + (−0.853 + 4.83i)17-s + ⋯
L(s)  = 1  + (−0.541 − 0.454i)2-s + (0.442 + 0.371i)3-s + (0.0868 + 0.492i)4-s + (−0.164 + 0.932i)5-s + (−0.0708 − 0.402i)6-s + (−0.188 − 0.981i)7-s + (0.176 − 0.306i)8-s + (0.0578 + 0.328i)9-s + (0.513 − 0.430i)10-s + (−0.0163 − 0.0283i)11-s + (−0.144 + 0.249i)12-s + (0.150 + 0.853i)13-s + (−0.343 + 0.617i)14-s + (−0.418 + 0.351i)15-s + (−0.234 + 0.0855i)16-s + (−0.206 + 1.17i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.385 - 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.385 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(798\)    =    \(2 \cdot 3 \cdot 7 \cdot 19\)
Sign: $0.385 - 0.922i$
Analytic conductor: \(6.37206\)
Root analytic conductor: \(2.52429\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{798} (613, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 798,\ (\ :1/2),\ 0.385 - 0.922i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.975015 + 0.649300i\)
\(L(\frac12)\) \(\approx\) \(0.975015 + 0.649300i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.766 + 0.642i)T \)
3 \( 1 + (-0.766 - 0.642i)T \)
7 \( 1 + (0.5 + 2.59i)T \)
19 \( 1 + (-3.85 + 2.03i)T \)
good5 \( 1 + (0.367 - 2.08i)T + (-4.69 - 1.71i)T^{2} \)
11 \( 1 + (0.0542 + 0.0940i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (-0.542 - 3.07i)T + (-12.2 + 4.44i)T^{2} \)
17 \( 1 + (0.853 - 4.83i)T + (-15.9 - 5.81i)T^{2} \)
23 \( 1 + (-6.26 - 2.28i)T + (17.6 + 14.7i)T^{2} \)
29 \( 1 + (3.83 + 1.39i)T + (22.2 + 18.6i)T^{2} \)
31 \( 1 + 9.16T + 31T^{2} \)
37 \( 1 + (-4.62 - 8.00i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (2.19 - 12.4i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (6.01 + 5.05i)T + (7.46 + 42.3i)T^{2} \)
47 \( 1 + (-1.68 - 9.56i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 + (-0.0551 - 0.312i)T + (-49.8 + 18.1i)T^{2} \)
59 \( 1 + (0.593 - 3.36i)T + (-55.4 - 20.1i)T^{2} \)
61 \( 1 + (-3.99 - 1.45i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (-5.85 + 4.91i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (-4.84 - 4.06i)T + (12.3 + 69.9i)T^{2} \)
73 \( 1 + (10.7 + 9.01i)T + (12.6 + 71.8i)T^{2} \)
79 \( 1 + (-11.3 + 4.11i)T + (60.5 - 50.7i)T^{2} \)
83 \( 1 + (4.97 + 8.60i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (-4.59 + 3.85i)T + (15.4 - 87.6i)T^{2} \)
97 \( 1 + (-14.1 + 5.15i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46116131639792045434395236811, −9.619764710882136044814608185148, −8.969027063475435968933324370952, −7.82629586174416936560673874522, −7.18199988594976874938831885804, −6.38449329799365653230868476413, −4.74349609358388156287593139366, −3.66362128592190842586567707799, −3.04525545256753929426195618536, −1.53453660880484668108193343237, 0.70000232347625481265482815606, 2.21095767582941558643767782329, 3.46995195357977599898794732111, 5.16676268122981394807518990755, 5.51944056345928062807365250954, 6.90023299606744768108101227103, 7.61183940422311353814919929195, 8.594597485238881341324915273402, 9.029233095205989191989499525320, 9.687806083419279742743806731020

Graph of the $Z$-function along the critical line