Properties

Label 2-798-133.81-c1-0-22
Degree $2$
Conductor $798$
Sign $-0.560 + 0.828i$
Analytic cond. $6.37206$
Root an. cond. $2.52429$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.766 − 0.642i)2-s + (0.766 + 0.642i)3-s + (0.173 + 0.984i)4-s + (0.101 − 0.577i)5-s + (−0.173 − 0.984i)6-s + (−0.5 − 2.59i)7-s + (0.500 − 0.866i)8-s + (0.173 + 0.984i)9-s + (−0.448 + 0.376i)10-s + (−1.40 − 2.43i)11-s + (−0.500 + 0.866i)12-s + (−0.176 − 1.00i)13-s + (−1.28 + 2.31i)14-s + (0.448 − 0.376i)15-s + (−0.939 + 0.342i)16-s + (0.498 − 2.82i)17-s + ⋯
L(s)  = 1  + (−0.541 − 0.454i)2-s + (0.442 + 0.371i)3-s + (0.0868 + 0.492i)4-s + (0.0455 − 0.258i)5-s + (−0.0708 − 0.402i)6-s + (−0.188 − 0.981i)7-s + (0.176 − 0.306i)8-s + (0.0578 + 0.328i)9-s + (−0.141 + 0.119i)10-s + (−0.424 − 0.734i)11-s + (−0.144 + 0.249i)12-s + (−0.0490 − 0.278i)13-s + (−0.343 + 0.617i)14-s + (0.115 − 0.0972i)15-s + (−0.234 + 0.0855i)16-s + (0.120 − 0.686i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.560 + 0.828i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.560 + 0.828i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(798\)    =    \(2 \cdot 3 \cdot 7 \cdot 19\)
Sign: $-0.560 + 0.828i$
Analytic conductor: \(6.37206\)
Root analytic conductor: \(2.52429\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{798} (613, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 798,\ (\ :1/2),\ -0.560 + 0.828i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.436801 - 0.823024i\)
\(L(\frac12)\) \(\approx\) \(0.436801 - 0.823024i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.766 + 0.642i)T \)
3 \( 1 + (-0.766 - 0.642i)T \)
7 \( 1 + (0.5 + 2.59i)T \)
19 \( 1 + (4.18 - 1.23i)T \)
good5 \( 1 + (-0.101 + 0.577i)T + (-4.69 - 1.71i)T^{2} \)
11 \( 1 + (1.40 + 2.43i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (0.176 + 1.00i)T + (-12.2 + 4.44i)T^{2} \)
17 \( 1 + (-0.498 + 2.82i)T + (-15.9 - 5.81i)T^{2} \)
23 \( 1 + (5.82 + 2.12i)T + (17.6 + 14.7i)T^{2} \)
29 \( 1 + (2.17 + 0.790i)T + (22.2 + 18.6i)T^{2} \)
31 \( 1 + 1.37T + 31T^{2} \)
37 \( 1 + (3.41 + 5.91i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-1.53 + 8.70i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (-7.01 - 5.88i)T + (7.46 + 42.3i)T^{2} \)
47 \( 1 + (-0.0272 - 0.154i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 + (1.29 + 7.35i)T + (-49.8 + 18.1i)T^{2} \)
59 \( 1 + (-1.64 + 9.30i)T + (-55.4 - 20.1i)T^{2} \)
61 \( 1 + (-3.69 - 1.34i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (-11.1 + 9.31i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (-0.573 - 0.481i)T + (12.3 + 69.9i)T^{2} \)
73 \( 1 + (-9.22 - 7.74i)T + (12.6 + 71.8i)T^{2} \)
79 \( 1 + (6.75 - 2.45i)T + (60.5 - 50.7i)T^{2} \)
83 \( 1 + (8.23 + 14.2i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (8.82 - 7.40i)T + (15.4 - 87.6i)T^{2} \)
97 \( 1 + (-1.18 + 0.429i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01768283935793351819411465382, −9.212388483638141847128359918870, −8.351514531728947521284570993547, −7.69611020236791615141348175958, −6.69988399378381380498713602460, −5.42205527944959746253106364715, −4.20919899181862254078247297317, −3.42033439959907426854391342781, −2.19677464368780147038985556111, −0.50440721939578096738105237257, 1.81179482853211005535481976031, 2.72769574613863933144576845660, 4.25198790380893482773190000330, 5.52412858068869219394064374516, 6.37472485093848283281479767326, 7.15203728496836376947419560552, 8.137504710955922182205320743979, 8.710574536202410970802428911223, 9.600472887343996191518517298405, 10.30114901917934786438786290609

Graph of the $Z$-function along the critical line