L(s) = 1 | + 2-s + 4-s − 4·5-s − 4·7-s + 8-s − 3·9-s − 4·10-s + 11-s + 7·13-s − 4·14-s + 16-s − 3·18-s − 4·20-s + 22-s + 4·23-s + 11·25-s + 7·26-s − 4·28-s − 3·29-s + 32-s + 16·35-s − 3·36-s + 8·37-s − 4·40-s − 12·41-s + 7·43-s + 44-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 1.78·5-s − 1.51·7-s + 0.353·8-s − 9-s − 1.26·10-s + 0.301·11-s + 1.94·13-s − 1.06·14-s + 1/4·16-s − 0.707·18-s − 0.894·20-s + 0.213·22-s + 0.834·23-s + 11/5·25-s + 1.37·26-s − 0.755·28-s − 0.557·29-s + 0.176·32-s + 2.70·35-s − 1/2·36-s + 1.31·37-s − 0.632·40-s − 1.87·41-s + 1.06·43-s + 0.150·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7942 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7942 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 11 | \( 1 - T \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + p T^{2} \) |
| 5 | \( 1 + 4 T + p T^{2} \) |
| 7 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 - 7 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 23 | \( 1 - 4 T + p T^{2} \) |
| 29 | \( 1 + 3 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 - 8 T + p T^{2} \) |
| 41 | \( 1 + 12 T + p T^{2} \) |
| 43 | \( 1 - 7 T + p T^{2} \) |
| 47 | \( 1 + 5 T + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 - 6 T + p T^{2} \) |
| 61 | \( 1 + 5 T + p T^{2} \) |
| 67 | \( 1 + 8 T + p T^{2} \) |
| 71 | \( 1 + 9 T + p T^{2} \) |
| 73 | \( 1 - 10 T + p T^{2} \) |
| 79 | \( 1 + 6 T + p T^{2} \) |
| 83 | \( 1 + 3 T + p T^{2} \) |
| 89 | \( 1 + T + p T^{2} \) |
| 97 | \( 1 + 5 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.35921014049096831547863072082, −6.69033182920975630710534486503, −6.17257156415181068988122114210, −5.48272456049391023053489696435, −4.40638984445877629161596984965, −3.71838898702585309982223219300, −3.36922710853353974840771616403, −2.77397918316604924788381349532, −1.07184012577794186254168194107, 0,
1.07184012577794186254168194107, 2.77397918316604924788381349532, 3.36922710853353974840771616403, 3.71838898702585309982223219300, 4.40638984445877629161596984965, 5.48272456049391023053489696435, 6.17257156415181068988122114210, 6.69033182920975630710534486503, 7.35921014049096831547863072082