Properties

Label 2-7938-1.1-c1-0-89
Degree $2$
Conductor $7938$
Sign $1$
Analytic cond. $63.3852$
Root an. cond. $7.96148$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s + 4.24·11-s + 6.24·13-s + 16-s + 6.24·19-s + 4.24·22-s + 7.24·23-s − 5·25-s + 6.24·26-s − 4.24·29-s + 0.757·31-s + 32-s − 4·37-s + 6.24·38-s − 5.48·41-s − 6.48·43-s + 4.24·44-s + 7.24·46-s + 13.2·47-s − 5·50-s + 6.24·52-s + 4.24·53-s − 4.24·58-s + 6.24·61-s + 0.757·62-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 0.353·8-s + 1.27·11-s + 1.73·13-s + 0.250·16-s + 1.43·19-s + 0.904·22-s + 1.51·23-s − 25-s + 1.22·26-s − 0.787·29-s + 0.136·31-s + 0.176·32-s − 0.657·37-s + 1.01·38-s − 0.856·41-s − 0.988·43-s + 0.639·44-s + 1.06·46-s + 1.93·47-s − 0.707·50-s + 0.865·52-s + 0.582·53-s − 0.557·58-s + 0.799·61-s + 0.0961·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7938 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7938 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7938\)    =    \(2 \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(63.3852\)
Root analytic conductor: \(7.96148\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7938,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.411853647\)
\(L(\frac12)\) \(\approx\) \(4.411853647\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 5T^{2} \)
11 \( 1 - 4.24T + 11T^{2} \)
13 \( 1 - 6.24T + 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 - 6.24T + 19T^{2} \)
23 \( 1 - 7.24T + 23T^{2} \)
29 \( 1 + 4.24T + 29T^{2} \)
31 \( 1 - 0.757T + 31T^{2} \)
37 \( 1 + 4T + 37T^{2} \)
41 \( 1 + 5.48T + 41T^{2} \)
43 \( 1 + 6.48T + 43T^{2} \)
47 \( 1 - 13.2T + 47T^{2} \)
53 \( 1 - 4.24T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 6.24T + 61T^{2} \)
67 \( 1 + 8.24T + 67T^{2} \)
71 \( 1 + 7.24T + 71T^{2} \)
73 \( 1 + 7T + 73T^{2} \)
79 \( 1 - 9.24T + 79T^{2} \)
83 \( 1 - 7.75T + 83T^{2} \)
89 \( 1 + 5.48T + 89T^{2} \)
97 \( 1 + 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64881818274005793129962247361, −7.00771464529860782769396660494, −6.41217437750548102955904505747, −5.69018829035559722487623337642, −5.16219504112330216213752204497, −4.05906611938360777203433040467, −3.66723363976203350272019754494, −2.96386756593487151351751450024, −1.66509796729960218976711994202, −1.05337508707568473600596514998, 1.05337508707568473600596514998, 1.66509796729960218976711994202, 2.96386756593487151351751450024, 3.66723363976203350272019754494, 4.05906611938360777203433040467, 5.16219504112330216213752204497, 5.69018829035559722487623337642, 6.41217437750548102955904505747, 7.00771464529860782769396660494, 7.64881818274005793129962247361

Graph of the $Z$-function along the critical line