L(s) = 1 | − 2-s + 4-s − 3.18·5-s − 8-s + 3.18·10-s + 3.18·11-s − 5.70·13-s + 16-s + 1.52·17-s + 1.28·19-s − 3.18·20-s − 3.18·22-s + 2.23·23-s + 5.12·25-s + 5.70·26-s + 7.08·29-s − 9.42·31-s − 32-s − 1.52·34-s − 37-s − 1.28·38-s + 3.18·40-s + 5.60·41-s − 6.82·43-s + 3.18·44-s − 2.23·46-s − 5.82·47-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s − 1.42·5-s − 0.353·8-s + 1.00·10-s + 0.959·11-s − 1.58·13-s + 0.250·16-s + 0.369·17-s + 0.294·19-s − 0.711·20-s − 0.678·22-s + 0.466·23-s + 1.02·25-s + 1.11·26-s + 1.31·29-s − 1.69·31-s − 0.176·32-s − 0.260·34-s − 0.164·37-s − 0.208·38-s + 0.503·40-s + 0.875·41-s − 1.04·43-s + 0.479·44-s − 0.330·46-s − 0.850·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7938 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7938 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 3.18T + 5T^{2} \) |
| 11 | \( 1 - 3.18T + 11T^{2} \) |
| 13 | \( 1 + 5.70T + 13T^{2} \) |
| 17 | \( 1 - 1.52T + 17T^{2} \) |
| 19 | \( 1 - 1.28T + 19T^{2} \) |
| 23 | \( 1 - 2.23T + 23T^{2} \) |
| 29 | \( 1 - 7.08T + 29T^{2} \) |
| 31 | \( 1 + 9.42T + 31T^{2} \) |
| 37 | \( 1 + T + 37T^{2} \) |
| 41 | \( 1 - 5.60T + 41T^{2} \) |
| 43 | \( 1 + 6.82T + 43T^{2} \) |
| 47 | \( 1 + 5.82T + 47T^{2} \) |
| 53 | \( 1 + 2.05T + 53T^{2} \) |
| 59 | \( 1 + 1.12T + 59T^{2} \) |
| 61 | \( 1 - 3.12T + 61T^{2} \) |
| 67 | \( 1 - 10.9T + 67T^{2} \) |
| 71 | \( 1 - 8.69T + 71T^{2} \) |
| 73 | \( 1 - 4.96T + 73T^{2} \) |
| 79 | \( 1 + 4.13T + 79T^{2} \) |
| 83 | \( 1 - 8.06T + 83T^{2} \) |
| 89 | \( 1 + 0.225T + 89T^{2} \) |
| 97 | \( 1 + 14.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.49917337575295523391131171560, −7.06640726301080162512418876965, −6.44528600748073401679346288212, −5.28761221816122638832749231025, −4.66156076877008729972728394940, −3.76965846253541146368740550458, −3.17019298003706518576796864164, −2.15617317862415885789292865547, −0.990424096893601264252266618152, 0,
0.990424096893601264252266618152, 2.15617317862415885789292865547, 3.17019298003706518576796864164, 3.76965846253541146368740550458, 4.66156076877008729972728394940, 5.28761221816122638832749231025, 6.44528600748073401679346288212, 7.06640726301080162512418876965, 7.49917337575295523391131171560