Properties

Label 2-7938-1.1-c1-0-50
Degree $2$
Conductor $7938$
Sign $1$
Analytic cond. $63.3852$
Root an. cond. $7.96148$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 0.593·5-s + 8-s + 0.593·10-s + 0.593·11-s − 2.51·13-s + 16-s − 2.92·17-s + 5.38·19-s + 0.593·20-s + 0.593·22-s − 4.46·23-s − 4.64·25-s − 2.51·26-s − 6.19·29-s + 7.86·31-s + 32-s − 2.92·34-s − 37-s + 5.38·38-s + 0.593·40-s + 0.273·41-s + 11.1·43-s + 0.593·44-s − 4.46·46-s + 12.1·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 0.265·5-s + 0.353·8-s + 0.187·10-s + 0.178·11-s − 0.697·13-s + 0.250·16-s − 0.708·17-s + 1.23·19-s + 0.132·20-s + 0.126·22-s − 0.930·23-s − 0.929·25-s − 0.493·26-s − 1.15·29-s + 1.41·31-s + 0.176·32-s − 0.500·34-s − 0.164·37-s + 0.872·38-s + 0.0938·40-s + 0.0426·41-s + 1.70·43-s + 0.0894·44-s − 0.657·46-s + 1.77·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7938 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7938 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7938\)    =    \(2 \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(63.3852\)
Root analytic conductor: \(7.96148\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7938,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.370131502\)
\(L(\frac12)\) \(\approx\) \(3.370131502\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 0.593T + 5T^{2} \)
11 \( 1 - 0.593T + 11T^{2} \)
13 \( 1 + 2.51T + 13T^{2} \)
17 \( 1 + 2.92T + 17T^{2} \)
19 \( 1 - 5.38T + 19T^{2} \)
23 \( 1 + 4.46T + 23T^{2} \)
29 \( 1 + 6.19T + 29T^{2} \)
31 \( 1 - 7.86T + 31T^{2} \)
37 \( 1 + T + 37T^{2} \)
41 \( 1 - 0.273T + 41T^{2} \)
43 \( 1 - 11.1T + 43T^{2} \)
47 \( 1 - 12.1T + 47T^{2} \)
53 \( 1 - 8.05T + 53T^{2} \)
59 \( 1 - 8.64T + 59T^{2} \)
61 \( 1 - 6.64T + 61T^{2} \)
67 \( 1 + 1.91T + 67T^{2} \)
71 \( 1 - 14.4T + 71T^{2} \)
73 \( 1 - 7.91T + 73T^{2} \)
79 \( 1 + 9.24T + 79T^{2} \)
83 \( 1 + 7.70T + 83T^{2} \)
89 \( 1 - 12.4T + 89T^{2} \)
97 \( 1 - 11.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.57195108775269538142285455377, −7.20672211411390847042701771784, −6.29778021666941377537658206727, −5.69505258942688516612573812127, −5.12457526773139723693482644717, −4.19036564464024940490272591818, −3.72722318764231437928223296079, −2.56992013609269888269433201346, −2.10505788702511425628219423839, −0.808959057657749111890277266585, 0.808959057657749111890277266585, 2.10505788702511425628219423839, 2.56992013609269888269433201346, 3.72722318764231437928223296079, 4.19036564464024940490272591818, 5.12457526773139723693482644717, 5.69505258942688516612573812127, 6.29778021666941377537658206727, 7.20672211411390847042701771784, 7.57195108775269538142285455377

Graph of the $Z$-function along the critical line