Properties

Label 2-7938-1.1-c1-0-161
Degree $2$
Conductor $7938$
Sign $-1$
Analytic cond. $63.3852$
Root an. cond. $7.96148$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 3·5-s + 8-s + 3·10-s − 6·11-s + 13-s + 16-s − 3·17-s − 2·19-s + 3·20-s − 6·22-s − 6·23-s + 4·25-s + 26-s − 9·29-s + 10·31-s + 32-s − 3·34-s − 7·37-s − 2·38-s + 3·40-s − 6·41-s − 4·43-s − 6·44-s − 6·46-s − 6·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.34·5-s + 0.353·8-s + 0.948·10-s − 1.80·11-s + 0.277·13-s + 1/4·16-s − 0.727·17-s − 0.458·19-s + 0.670·20-s − 1.27·22-s − 1.25·23-s + 4/5·25-s + 0.196·26-s − 1.67·29-s + 1.79·31-s + 0.176·32-s − 0.514·34-s − 1.15·37-s − 0.324·38-s + 0.474·40-s − 0.937·41-s − 0.609·43-s − 0.904·44-s − 0.884·46-s − 0.875·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7938 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7938 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7938\)    =    \(2 \cdot 3^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(63.3852\)
Root analytic conductor: \(7.96148\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7938,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 9 T + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 + 7 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 11 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 - 2 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 3 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.43590489116254193591372166560, −6.42428355502892186171436272382, −6.16956002155740628421880966525, −5.22204405458644813686464103528, −5.01333912984247044922320835086, −3.93578360822709326417332802931, −3.00254246901057700707106974057, −2.21709797029952527285056762585, −1.75191805679101399207902224664, 0, 1.75191805679101399207902224664, 2.21709797029952527285056762585, 3.00254246901057700707106974057, 3.93578360822709326417332802931, 5.01333912984247044922320835086, 5.22204405458644813686464103528, 6.16956002155740628421880966525, 6.42428355502892186171436272382, 7.43590489116254193591372166560

Graph of the $Z$-function along the critical line