Properties

Label 2-7935-1.1-c1-0-138
Degree $2$
Conductor $7935$
Sign $1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.404·2-s + 3-s − 1.83·4-s − 5-s − 0.404·6-s − 1.25·7-s + 1.55·8-s + 9-s + 0.404·10-s + 6.20·11-s − 1.83·12-s + 1.55·13-s + 0.509·14-s − 15-s + 3.04·16-s + 6.17·17-s − 0.404·18-s + 1.68·19-s + 1.83·20-s − 1.25·21-s − 2.51·22-s + 1.55·24-s + 25-s − 0.630·26-s + 27-s + 2.30·28-s + 3.06·29-s + ⋯
L(s)  = 1  − 0.286·2-s + 0.577·3-s − 0.918·4-s − 0.447·5-s − 0.165·6-s − 0.475·7-s + 0.549·8-s + 0.333·9-s + 0.128·10-s + 1.86·11-s − 0.530·12-s + 0.431·13-s + 0.136·14-s − 0.258·15-s + 0.760·16-s + 1.49·17-s − 0.0954·18-s + 0.385·19-s + 0.410·20-s − 0.274·21-s − 0.535·22-s + 0.317·24-s + 0.200·25-s − 0.123·26-s + 0.192·27-s + 0.436·28-s + 0.568·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.082828722\)
\(L(\frac12)\) \(\approx\) \(2.082828722\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 + T \)
23 \( 1 \)
good2 \( 1 + 0.404T + 2T^{2} \)
7 \( 1 + 1.25T + 7T^{2} \)
11 \( 1 - 6.20T + 11T^{2} \)
13 \( 1 - 1.55T + 13T^{2} \)
17 \( 1 - 6.17T + 17T^{2} \)
19 \( 1 - 1.68T + 19T^{2} \)
29 \( 1 - 3.06T + 29T^{2} \)
31 \( 1 - 4.23T + 31T^{2} \)
37 \( 1 - 11.6T + 37T^{2} \)
41 \( 1 - 1.76T + 41T^{2} \)
43 \( 1 - 1.68T + 43T^{2} \)
47 \( 1 + 0.384T + 47T^{2} \)
53 \( 1 + 12.5T + 53T^{2} \)
59 \( 1 - 11.6T + 59T^{2} \)
61 \( 1 + 10.1T + 61T^{2} \)
67 \( 1 - 0.978T + 67T^{2} \)
71 \( 1 + 2.85T + 71T^{2} \)
73 \( 1 - 4.48T + 73T^{2} \)
79 \( 1 - 13.5T + 79T^{2} \)
83 \( 1 + 12.8T + 83T^{2} \)
89 \( 1 + 16.3T + 89T^{2} \)
97 \( 1 - 2.59T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.011738321880265645787090791554, −7.35401511575064509853125761641, −6.46650661224982470389395400990, −5.89884508362549894777752606114, −4.80365451563882849066520923173, −4.15075987016465149210798469593, −3.57327892089640472055135555956, −2.95497077664243711191741959933, −1.40167254947278623708502880866, −0.855854917771675657316094069247, 0.855854917771675657316094069247, 1.40167254947278623708502880866, 2.95497077664243711191741959933, 3.57327892089640472055135555956, 4.15075987016465149210798469593, 4.80365451563882849066520923173, 5.89884508362549894777752606114, 6.46650661224982470389395400990, 7.35401511575064509853125761641, 8.011738321880265645787090791554

Graph of the $Z$-function along the critical line