Properties

Label 2-7935-1.1-c1-0-132
Degree $2$
Conductor $7935$
Sign $1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.36·2-s + 3-s + 3.59·4-s + 5-s − 2.36·6-s + 0.0275·7-s − 3.77·8-s + 9-s − 2.36·10-s + 5.24·11-s + 3.59·12-s + 5.51·13-s − 0.0652·14-s + 15-s + 1.73·16-s + 1.18·17-s − 2.36·18-s − 2.14·19-s + 3.59·20-s + 0.0275·21-s − 12.3·22-s − 3.77·24-s + 25-s − 13.0·26-s + 27-s + 0.0991·28-s − 9.85·29-s + ⋯
L(s)  = 1  − 1.67·2-s + 0.577·3-s + 1.79·4-s + 0.447·5-s − 0.965·6-s + 0.0104·7-s − 1.33·8-s + 0.333·9-s − 0.747·10-s + 1.58·11-s + 1.03·12-s + 1.52·13-s − 0.0174·14-s + 0.258·15-s + 0.432·16-s + 0.287·17-s − 0.557·18-s − 0.492·19-s + 0.803·20-s + 0.00602·21-s − 2.64·22-s − 0.769·24-s + 0.200·25-s − 2.55·26-s + 0.192·27-s + 0.0187·28-s − 1.82·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.558330531\)
\(L(\frac12)\) \(\approx\) \(1.558330531\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 - T \)
23 \( 1 \)
good2 \( 1 + 2.36T + 2T^{2} \)
7 \( 1 - 0.0275T + 7T^{2} \)
11 \( 1 - 5.24T + 11T^{2} \)
13 \( 1 - 5.51T + 13T^{2} \)
17 \( 1 - 1.18T + 17T^{2} \)
19 \( 1 + 2.14T + 19T^{2} \)
29 \( 1 + 9.85T + 29T^{2} \)
31 \( 1 - 2.87T + 31T^{2} \)
37 \( 1 + 9.17T + 37T^{2} \)
41 \( 1 + 4.10T + 41T^{2} \)
43 \( 1 + 1.11T + 43T^{2} \)
47 \( 1 - 0.209T + 47T^{2} \)
53 \( 1 - 2.85T + 53T^{2} \)
59 \( 1 - 12.1T + 59T^{2} \)
61 \( 1 - 9.75T + 61T^{2} \)
67 \( 1 - 8.19T + 67T^{2} \)
71 \( 1 - 16.1T + 71T^{2} \)
73 \( 1 + 3.73T + 73T^{2} \)
79 \( 1 - 2.17T + 79T^{2} \)
83 \( 1 - 10.3T + 83T^{2} \)
89 \( 1 - 3.00T + 89T^{2} \)
97 \( 1 + 2.52T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.194783234330227843135173053932, −7.26682046353261628355159353178, −6.64347409607241381540080859211, −6.23990592566707544494300645089, −5.20728699769315123375722987646, −3.86647349563074852282518848409, −3.51145083734358664787062752376, −2.14274710363131191160257924661, −1.62985615222501610941152857782, −0.832694785638239461388079267892, 0.832694785638239461388079267892, 1.62985615222501610941152857782, 2.14274710363131191160257924661, 3.51145083734358664787062752376, 3.86647349563074852282518848409, 5.20728699769315123375722987646, 6.23990592566707544494300645089, 6.64347409607241381540080859211, 7.26682046353261628355159353178, 8.194783234330227843135173053932

Graph of the $Z$-function along the critical line