Properties

Label 2-7935-1.1-c1-0-13
Degree $2$
Conductor $7935$
Sign $1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.59·2-s − 3-s + 0.550·4-s − 5-s − 1.59·6-s − 3.15·7-s − 2.31·8-s + 9-s − 1.59·10-s − 3.93·11-s − 0.550·12-s + 5.83·13-s − 5.03·14-s + 15-s − 4.79·16-s − 3.95·17-s + 1.59·18-s − 5.47·19-s − 0.550·20-s + 3.15·21-s − 6.28·22-s + 2.31·24-s + 25-s + 9.31·26-s − 27-s − 1.73·28-s − 6.54·29-s + ⋯
L(s)  = 1  + 1.12·2-s − 0.577·3-s + 0.275·4-s − 0.447·5-s − 0.651·6-s − 1.19·7-s − 0.818·8-s + 0.333·9-s − 0.504·10-s − 1.18·11-s − 0.158·12-s + 1.61·13-s − 1.34·14-s + 0.258·15-s − 1.19·16-s − 0.960·17-s + 0.376·18-s − 1.25·19-s − 0.123·20-s + 0.688·21-s − 1.34·22-s + 0.472·24-s + 0.200·25-s + 1.82·26-s − 0.192·27-s − 0.327·28-s − 1.21·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7071080658\)
\(L(\frac12)\) \(\approx\) \(0.7071080658\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 + T \)
23 \( 1 \)
good2 \( 1 - 1.59T + 2T^{2} \)
7 \( 1 + 3.15T + 7T^{2} \)
11 \( 1 + 3.93T + 11T^{2} \)
13 \( 1 - 5.83T + 13T^{2} \)
17 \( 1 + 3.95T + 17T^{2} \)
19 \( 1 + 5.47T + 19T^{2} \)
29 \( 1 + 6.54T + 29T^{2} \)
31 \( 1 - 5.79T + 31T^{2} \)
37 \( 1 + 4.28T + 37T^{2} \)
41 \( 1 - 4.15T + 41T^{2} \)
43 \( 1 + 3.97T + 43T^{2} \)
47 \( 1 + 11.4T + 47T^{2} \)
53 \( 1 - 4.29T + 53T^{2} \)
59 \( 1 + 13.8T + 59T^{2} \)
61 \( 1 + 2.38T + 61T^{2} \)
67 \( 1 + 10.2T + 67T^{2} \)
71 \( 1 + 7.43T + 71T^{2} \)
73 \( 1 - 4.84T + 73T^{2} \)
79 \( 1 - 9.59T + 79T^{2} \)
83 \( 1 + 8.40T + 83T^{2} \)
89 \( 1 - 9.86T + 89T^{2} \)
97 \( 1 - 15.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.71040100087426576359341308049, −6.74845623764049721791584911940, −6.18247863955922462988995001208, −5.93312719730681235637128187445, −4.88048572513190688828294842893, −4.40166951716738386724412168763, −3.54750307773284417562410161830, −3.11325141418208868794814638118, −2.01000651617617814160460240710, −0.33910390484505960582154813508, 0.33910390484505960582154813508, 2.01000651617617814160460240710, 3.11325141418208868794814638118, 3.54750307773284417562410161830, 4.40166951716738386724412168763, 4.88048572513190688828294842893, 5.93312719730681235637128187445, 6.18247863955922462988995001208, 6.74845623764049721791584911940, 7.71040100087426576359341308049

Graph of the $Z$-function along the critical line