Properties

Label 2-7935-1.1-c1-0-118
Degree $2$
Conductor $7935$
Sign $1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.0244·2-s − 3-s − 1.99·4-s + 5-s − 0.0244·6-s + 1.12·7-s − 0.0977·8-s + 9-s + 0.0244·10-s − 2.77·11-s + 1.99·12-s + 2.87·13-s + 0.0273·14-s − 15-s + 3.99·16-s + 7.29·17-s + 0.0244·18-s + 6.26·19-s − 1.99·20-s − 1.12·21-s − 0.0679·22-s + 0.0977·24-s + 25-s + 0.0702·26-s − 27-s − 2.24·28-s + 1.64·29-s + ⋯
L(s)  = 1  + 0.0172·2-s − 0.577·3-s − 0.999·4-s + 0.447·5-s − 0.00998·6-s + 0.423·7-s − 0.0345·8-s + 0.333·9-s + 0.00773·10-s − 0.837·11-s + 0.577·12-s + 0.796·13-s + 0.00732·14-s − 0.258·15-s + 0.999·16-s + 1.76·17-s + 0.00576·18-s + 1.43·19-s − 0.447·20-s − 0.244·21-s − 0.0144·22-s + 0.0199·24-s + 0.200·25-s + 0.0137·26-s − 0.192·27-s − 0.423·28-s + 0.305·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.801236804\)
\(L(\frac12)\) \(\approx\) \(1.801236804\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 - T \)
23 \( 1 \)
good2 \( 1 - 0.0244T + 2T^{2} \)
7 \( 1 - 1.12T + 7T^{2} \)
11 \( 1 + 2.77T + 11T^{2} \)
13 \( 1 - 2.87T + 13T^{2} \)
17 \( 1 - 7.29T + 17T^{2} \)
19 \( 1 - 6.26T + 19T^{2} \)
29 \( 1 - 1.64T + 29T^{2} \)
31 \( 1 - 10.0T + 31T^{2} \)
37 \( 1 - 1.33T + 37T^{2} \)
41 \( 1 - 3.81T + 41T^{2} \)
43 \( 1 - 3.69T + 43T^{2} \)
47 \( 1 - 2.26T + 47T^{2} \)
53 \( 1 + 1.34T + 53T^{2} \)
59 \( 1 + 11.6T + 59T^{2} \)
61 \( 1 - 5.84T + 61T^{2} \)
67 \( 1 + 14.9T + 67T^{2} \)
71 \( 1 + 11.2T + 71T^{2} \)
73 \( 1 - 7.53T + 73T^{2} \)
79 \( 1 - 5.80T + 79T^{2} \)
83 \( 1 + 11.3T + 83T^{2} \)
89 \( 1 - 7.56T + 89T^{2} \)
97 \( 1 - 12.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83959949412016363816757689110, −7.36499840716859848403846247741, −6.00796873093662288607408060528, −5.85198935822279363107540303022, −4.98257955302543880439247045502, −4.60438658434520564803343338853, −3.49641456530888082188847307290, −2.87112860198362954869538461640, −1.37131504083343425156349252882, −0.801474376327471627463806331905, 0.801474376327471627463806331905, 1.37131504083343425156349252882, 2.87112860198362954869538461640, 3.49641456530888082188847307290, 4.60438658434520564803343338853, 4.98257955302543880439247045502, 5.85198935822279363107540303022, 6.00796873093662288607408060528, 7.36499840716859848403846247741, 7.83959949412016363816757689110

Graph of the $Z$-function along the critical line