Properties

Label 2-7935-1.1-c1-0-116
Degree $2$
Conductor $7935$
Sign $1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.51·2-s − 3-s + 0.300·4-s − 5-s + 1.51·6-s + 3.34·7-s + 2.57·8-s + 9-s + 1.51·10-s − 1.18·11-s − 0.300·12-s + 0.915·13-s − 5.06·14-s + 15-s − 4.51·16-s + 2.52·17-s − 1.51·18-s + 8.46·19-s − 0.300·20-s − 3.34·21-s + 1.79·22-s − 2.57·24-s + 25-s − 1.38·26-s − 27-s + 1.00·28-s + 7.86·29-s + ⋯
L(s)  = 1  − 1.07·2-s − 0.577·3-s + 0.150·4-s − 0.447·5-s + 0.619·6-s + 1.26·7-s + 0.911·8-s + 0.333·9-s + 0.479·10-s − 0.357·11-s − 0.0868·12-s + 0.253·13-s − 1.35·14-s + 0.258·15-s − 1.12·16-s + 0.611·17-s − 0.357·18-s + 1.94·19-s − 0.0672·20-s − 0.729·21-s + 0.383·22-s − 0.526·24-s + 0.200·25-s − 0.272·26-s − 0.192·27-s + 0.190·28-s + 1.46·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.129059203\)
\(L(\frac12)\) \(\approx\) \(1.129059203\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 + T \)
23 \( 1 \)
good2 \( 1 + 1.51T + 2T^{2} \)
7 \( 1 - 3.34T + 7T^{2} \)
11 \( 1 + 1.18T + 11T^{2} \)
13 \( 1 - 0.915T + 13T^{2} \)
17 \( 1 - 2.52T + 17T^{2} \)
19 \( 1 - 8.46T + 19T^{2} \)
29 \( 1 - 7.86T + 29T^{2} \)
31 \( 1 + 5.67T + 31T^{2} \)
37 \( 1 - 5.68T + 37T^{2} \)
41 \( 1 - 10.1T + 41T^{2} \)
43 \( 1 - 8.92T + 43T^{2} \)
47 \( 1 + 7.20T + 47T^{2} \)
53 \( 1 - 1.10T + 53T^{2} \)
59 \( 1 + 3.44T + 59T^{2} \)
61 \( 1 - 4.49T + 61T^{2} \)
67 \( 1 + 0.818T + 67T^{2} \)
71 \( 1 - 7.34T + 71T^{2} \)
73 \( 1 - 13.6T + 73T^{2} \)
79 \( 1 - 15.6T + 79T^{2} \)
83 \( 1 - 6.60T + 83T^{2} \)
89 \( 1 + 9.17T + 89T^{2} \)
97 \( 1 + 3.08T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.77320709094556005261715337970, −7.61457939227482523965953033082, −6.69640979481340452756137073952, −5.62512297468150036692913498217, −5.06200728251618247721120075520, −4.47631423548008679154768327739, −3.58240931678492136494696967378, −2.39569394917528622815939424370, −1.22736638663122690390125125151, −0.794909537145443682647944264843, 0.794909537145443682647944264843, 1.22736638663122690390125125151, 2.39569394917528622815939424370, 3.58240931678492136494696967378, 4.47631423548008679154768327739, 5.06200728251618247721120075520, 5.62512297468150036692913498217, 6.69640979481340452756137073952, 7.61457939227482523965953033082, 7.77320709094556005261715337970

Graph of the $Z$-function along the critical line