Properties

Label 2-7935-1.1-c1-0-111
Degree $2$
Conductor $7935$
Sign $1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.902·2-s − 3-s − 1.18·4-s − 5-s − 0.902·6-s − 0.451·7-s − 2.87·8-s + 9-s − 0.902·10-s + 5.51·11-s + 1.18·12-s + 5.84·13-s − 0.407·14-s + 15-s − 0.225·16-s + 5.83·17-s + 0.902·18-s + 0.208·19-s + 1.18·20-s + 0.451·21-s + 4.97·22-s + 2.87·24-s + 25-s + 5.27·26-s − 27-s + 0.534·28-s + 8.20·29-s + ⋯
L(s)  = 1  + 0.638·2-s − 0.577·3-s − 0.592·4-s − 0.447·5-s − 0.368·6-s − 0.170·7-s − 1.01·8-s + 0.333·9-s − 0.285·10-s + 1.66·11-s + 0.342·12-s + 1.62·13-s − 0.108·14-s + 0.258·15-s − 0.0562·16-s + 1.41·17-s + 0.212·18-s + 0.0477·19-s + 0.265·20-s + 0.0984·21-s + 1.06·22-s + 0.586·24-s + 0.200·25-s + 1.03·26-s − 0.192·27-s + 0.101·28-s + 1.52·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.163242867\)
\(L(\frac12)\) \(\approx\) \(2.163242867\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 + T \)
23 \( 1 \)
good2 \( 1 - 0.902T + 2T^{2} \)
7 \( 1 + 0.451T + 7T^{2} \)
11 \( 1 - 5.51T + 11T^{2} \)
13 \( 1 - 5.84T + 13T^{2} \)
17 \( 1 - 5.83T + 17T^{2} \)
19 \( 1 - 0.208T + 19T^{2} \)
29 \( 1 - 8.20T + 29T^{2} \)
31 \( 1 + 1.38T + 31T^{2} \)
37 \( 1 - 2.33T + 37T^{2} \)
41 \( 1 + 4.76T + 41T^{2} \)
43 \( 1 + 3.59T + 43T^{2} \)
47 \( 1 + 11.6T + 47T^{2} \)
53 \( 1 - 9.73T + 53T^{2} \)
59 \( 1 - 5.24T + 59T^{2} \)
61 \( 1 + 3.07T + 61T^{2} \)
67 \( 1 + 12.5T + 67T^{2} \)
71 \( 1 + 7.39T + 71T^{2} \)
73 \( 1 - 14.9T + 73T^{2} \)
79 \( 1 + 1.08T + 79T^{2} \)
83 \( 1 - 7.73T + 83T^{2} \)
89 \( 1 + 0.255T + 89T^{2} \)
97 \( 1 - 1.97T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.936194051988483713937715026025, −6.80068862434926826320678894405, −6.34018370268785576920095841643, −5.80004997480174915432313881822, −4.95415042182166671378208290829, −4.29164279465962171919634425819, −3.53559326286228602591578178077, −3.27421540568356158744008443261, −1.45843256787291422377819940524, −0.77615209877290124926074890456, 0.77615209877290124926074890456, 1.45843256787291422377819940524, 3.27421540568356158744008443261, 3.53559326286228602591578178077, 4.29164279465962171919634425819, 4.95415042182166671378208290829, 5.80004997480174915432313881822, 6.34018370268785576920095841643, 6.80068862434926826320678894405, 7.936194051988483713937715026025

Graph of the $Z$-function along the critical line