Properties

Label 2-78144-1.1-c1-0-30
Degree $2$
Conductor $78144$
Sign $1$
Analytic cond. $623.982$
Root an. cond. $24.9796$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s − 2·7-s + 9-s − 11-s + 2·13-s + 4·15-s − 6·17-s + 4·19-s − 2·21-s + 11·25-s + 27-s − 2·29-s + 6·31-s − 33-s − 8·35-s − 37-s + 2·39-s + 12·41-s + 4·43-s + 4·45-s − 3·49-s − 6·51-s + 6·53-s − 4·55-s + 4·57-s − 12·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s − 0.755·7-s + 1/3·9-s − 0.301·11-s + 0.554·13-s + 1.03·15-s − 1.45·17-s + 0.917·19-s − 0.436·21-s + 11/5·25-s + 0.192·27-s − 0.371·29-s + 1.07·31-s − 0.174·33-s − 1.35·35-s − 0.164·37-s + 0.320·39-s + 1.87·41-s + 0.609·43-s + 0.596·45-s − 3/7·49-s − 0.840·51-s + 0.824·53-s − 0.539·55-s + 0.529·57-s − 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78144\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 37\)
Sign: $1$
Analytic conductor: \(623.982\)
Root analytic conductor: \(24.9796\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 78144,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.642346524\)
\(L(\frac12)\) \(\approx\) \(4.642346524\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 + T \)
37 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.94157993982707, −13.53166668902262, −13.23678667082667, −12.64677725465409, −12.36774517116865, −11.30647734901418, −10.98989090706626, −10.34066516934488, −9.923120510469362, −9.459481430449891, −8.999948981308346, −8.789790865324175, −7.862750739293127, −7.385115164883095, −6.595516770891792, −6.290394715561323, −5.884625147501925, −5.165885143695375, −4.622610918803718, −3.900017988353652, −3.106560495933308, −2.630734238254006, −2.154600838050037, −1.442380147802556, −0.6742153808903359, 0.6742153808903359, 1.442380147802556, 2.154600838050037, 2.630734238254006, 3.106560495933308, 3.900017988353652, 4.622610918803718, 5.165885143695375, 5.884625147501925, 6.290394715561323, 6.595516770891792, 7.385115164883095, 7.862750739293127, 8.789790865324175, 8.999948981308346, 9.459481430449891, 9.923120510469362, 10.34066516934488, 10.98989090706626, 11.30647734901418, 12.36774517116865, 12.64677725465409, 13.23678667082667, 13.53166668902262, 13.94157993982707

Graph of the $Z$-function along the critical line