Properties

Label 2-7800-1.1-c1-0-64
Degree $2$
Conductor $7800$
Sign $1$
Analytic cond. $62.2833$
Root an. cond. $7.89197$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3.09·7-s + 9-s + 5.51·11-s − 13-s + 6.21·17-s + 3.09·21-s − 4.21·23-s + 27-s − 1.70·29-s + 5.51·33-s + 4.02·37-s − 39-s + 0.198·41-s + 5.70·43-s + 6.41·47-s + 2.57·49-s + 6.21·51-s − 4.02·53-s − 7.53·59-s + 11.9·61-s + 3.09·63-s − 4.83·67-s − 4.21·69-s + 7.98·71-s − 9.31·73-s + 17.0·77-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.16·7-s + 0.333·9-s + 1.66·11-s − 0.277·13-s + 1.50·17-s + 0.675·21-s − 0.879·23-s + 0.192·27-s − 0.317·29-s + 0.959·33-s + 0.662·37-s − 0.160·39-s + 0.0310·41-s + 0.870·43-s + 0.935·47-s + 0.367·49-s + 0.870·51-s − 0.553·53-s − 0.981·59-s + 1.52·61-s + 0.389·63-s − 0.590·67-s − 0.507·69-s + 0.948·71-s − 1.08·73-s + 1.94·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7800\)    =    \(2^{3} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(62.2833\)
Root analytic conductor: \(7.89197\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7800} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.737943092\)
\(L(\frac12)\) \(\approx\) \(3.737943092\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 3.09T + 7T^{2} \)
11 \( 1 - 5.51T + 11T^{2} \)
17 \( 1 - 6.21T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 4.21T + 23T^{2} \)
29 \( 1 + 1.70T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 4.02T + 37T^{2} \)
41 \( 1 - 0.198T + 41T^{2} \)
43 \( 1 - 5.70T + 43T^{2} \)
47 \( 1 - 6.41T + 47T^{2} \)
53 \( 1 + 4.02T + 53T^{2} \)
59 \( 1 + 7.53T + 59T^{2} \)
61 \( 1 - 11.9T + 61T^{2} \)
67 \( 1 + 4.83T + 67T^{2} \)
71 \( 1 - 7.98T + 71T^{2} \)
73 \( 1 + 9.31T + 73T^{2} \)
79 \( 1 - 8.51T + 79T^{2} \)
83 \( 1 - 14.7T + 83T^{2} \)
89 \( 1 + 9.40T + 89T^{2} \)
97 \( 1 + 14.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.86290386672702325988675327188, −7.38890570840623098818992933273, −6.49914141435036473270180025247, −5.77229669919593629691281532540, −4.98774118835668438133282110281, −4.12023136482073788627412648734, −3.70799670183773058904058213223, −2.62621033267919801224503046960, −1.68014009346994771899297531408, −1.05055516006068663686361631177, 1.05055516006068663686361631177, 1.68014009346994771899297531408, 2.62621033267919801224503046960, 3.70799670183773058904058213223, 4.12023136482073788627412648734, 4.98774118835668438133282110281, 5.77229669919593629691281532540, 6.49914141435036473270180025247, 7.38890570840623098818992933273, 7.86290386672702325988675327188

Graph of the $Z$-function along the critical line