L(s) = 1 | + (0.965 − 0.258i)2-s + (−0.933 − 1.45i)3-s + (0.866 − 0.499i)4-s + (0.313 + 0.313i)5-s + (−1.27 − 1.16i)6-s + (−0.0745 + 0.278i)7-s + (0.707 − 0.707i)8-s + (−1.25 + 2.72i)9-s + (0.383 + 0.221i)10-s + (0.150 + 0.563i)11-s + (−1.53 − 0.796i)12-s + (−1.79 + 3.12i)13-s + 0.288i·14-s + (0.164 − 0.749i)15-s + (0.500 − 0.866i)16-s + (2.79 + 4.84i)17-s + ⋯ |
L(s) = 1 | + (0.683 − 0.183i)2-s + (−0.539 − 0.842i)3-s + (0.433 − 0.249i)4-s + (0.140 + 0.140i)5-s + (−0.522 − 0.476i)6-s + (−0.0281 + 0.105i)7-s + (0.249 − 0.249i)8-s + (−0.418 + 0.908i)9-s + (0.121 + 0.0700i)10-s + (0.0454 + 0.169i)11-s + (−0.444 − 0.229i)12-s + (−0.496 + 0.867i)13-s + 0.0770i·14-s + (0.0424 − 0.193i)15-s + (0.125 − 0.216i)16-s + (0.678 + 1.17i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.714 + 0.699i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.714 + 0.699i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.06522 - 0.434410i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.06522 - 0.434410i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 + 0.258i)T \) |
| 3 | \( 1 + (0.933 + 1.45i)T \) |
| 13 | \( 1 + (1.79 - 3.12i)T \) |
good | 5 | \( 1 + (-0.313 - 0.313i)T + 5iT^{2} \) |
| 7 | \( 1 + (0.0745 - 0.278i)T + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (-0.150 - 0.563i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-2.79 - 4.84i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (6.79 + 1.81i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-3.32 + 5.76i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.57 + 2.06i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.03 - 1.03i)T - 31iT^{2} \) |
| 37 | \( 1 + (-6.72 + 1.80i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (7.36 - 1.97i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (3.26 - 1.88i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.71 + 3.71i)T - 47iT^{2} \) |
| 53 | \( 1 + 3.64iT - 53T^{2} \) |
| 59 | \( 1 + (3.29 + 0.881i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (5.25 + 9.10i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.29 - 8.55i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (3.98 - 14.8i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (-3.52 - 3.52i)T + 73iT^{2} \) |
| 79 | \( 1 - 1.10T + 79T^{2} \) |
| 83 | \( 1 + (8.23 + 8.23i)T + 83iT^{2} \) |
| 89 | \( 1 + (-3.64 - 13.6i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-2.59 - 0.694i)T + (84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.24381178992653656406020648893, −12.98483535119347807922480601862, −12.40380868970661909819600159589, −11.27904149968184824339923457473, −10.26886585423243363393464448759, −8.435873380414712935673376237797, −6.92149137627788179654641739829, −6.04554399291247481343567346538, −4.49632048024059623607826408631, −2.21148197272097829347180736101,
3.36821903224606867350158880034, 4.91133167063283160601895171717, 5.86757800305865580298043344684, 7.43106751012303519173667302840, 9.132192045436115378940864888060, 10.33189012505207288180060109770, 11.37087656375966861294482684766, 12.42636288697848300916277383074, 13.52805035776839986512806998117, 14.86997985105343226300418435161