L(s) = 1 | + (1.36 − 0.366i)2-s + (0.866 − 1.5i)3-s + (1.73 − i)4-s + (−6.39 − 6.39i)5-s + (0.633 − 2.36i)6-s + (9.23 + 2.47i)7-s + (1.99 − 2i)8-s + (−1.5 − 2.59i)9-s + (−11.0 − 6.39i)10-s + (4.21 + 15.7i)11-s − 3.46i·12-s + (−3.81 + 12.4i)13-s + 13.5·14-s + (−15.1 + 4.05i)15-s + (1.99 − 3.46i)16-s + (8.31 − 4.80i)17-s + ⋯ |
L(s) = 1 | + (0.683 − 0.183i)2-s + (0.288 − 0.5i)3-s + (0.433 − 0.250i)4-s + (−1.27 − 1.27i)5-s + (0.105 − 0.394i)6-s + (1.31 + 0.353i)7-s + (0.249 − 0.250i)8-s + (−0.166 − 0.288i)9-s + (−1.10 − 0.639i)10-s + (0.383 + 1.43i)11-s − 0.288i·12-s + (−0.293 + 0.956i)13-s + 0.965·14-s + (−1.00 + 0.270i)15-s + (0.124 − 0.216i)16-s + (0.489 − 0.282i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.491 + 0.871i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.491 + 0.871i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.55855 - 0.910359i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.55855 - 0.910359i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 + 0.366i)T \) |
| 3 | \( 1 + (-0.866 + 1.5i)T \) |
| 13 | \( 1 + (3.81 - 12.4i)T \) |
good | 5 | \( 1 + (6.39 + 6.39i)T + 25iT^{2} \) |
| 7 | \( 1 + (-9.23 - 2.47i)T + (42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-4.21 - 15.7i)T + (-104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (-8.31 + 4.80i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (-2.56 + 9.56i)T + (-312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (23.6 + 13.6i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (13.8 - 23.9i)T + (-420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-11.5 - 11.5i)T + 961iT^{2} \) |
| 37 | \( 1 + (5.45 + 20.3i)T + (-1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (-39.1 + 10.4i)T + (1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (30.9 - 17.8i)T + (924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-25.5 + 25.5i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + 39.0T + 2.80e3T^{2} \) |
| 59 | \( 1 + (46.0 + 12.3i)T + (3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (35.2 + 61.0i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-38.7 + 10.3i)T + (3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (8.28 - 30.9i)T + (-4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (9.68 - 9.68i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 56.1T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-4.59 - 4.59i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-29.9 - 111. i)T + (-6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (9.04 - 33.7i)T + (-8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.12061860648960629168347880919, −12.53906028180152616612389977505, −12.14420016705047371443888095094, −11.33316130721313857469675100471, −9.281532057421380435377050040135, −8.121675137564520425107820526857, −7.17778594003674267697699602591, −4.99907588882584987091790229373, −4.23532752786441553675729096662, −1.71825785398380507253526867395,
3.18526005980408196591463513336, 4.17255629601728924615184353100, 5.89714304195550361863896705593, 7.70004399489160677635346583566, 8.098396779251393265756720560841, 10.40213509969278274872193023321, 11.22774547411602237019025045995, 11.89325531791146016990760858192, 13.79454768306024270841977814482, 14.49571305777956417182745109500