L(s) = 1 | + (1 − i)2-s + 1.73·3-s − 2i·4-s + (1.26 − 1.26i)5-s + (1.73 − 1.73i)6-s + (0.732 + 0.732i)7-s + (−2 − 2i)8-s + 2.99·9-s − 2.53i·10-s + (−1.73 − 1.73i)11-s − 3.46i·12-s + (−3.92 + 12.3i)13-s + 1.46·14-s + (2.19 − 2.19i)15-s − 4·16-s − 5.32i·17-s + ⋯ |
L(s) = 1 | + (0.5 − 0.5i)2-s + 0.577·3-s − 0.5i·4-s + (0.253 − 0.253i)5-s + (0.288 − 0.288i)6-s + (0.104 + 0.104i)7-s + (−0.250 − 0.250i)8-s + 0.333·9-s − 0.253i·10-s + (−0.157 − 0.157i)11-s − 0.288i·12-s + (−0.302 + 0.953i)13-s + 0.104·14-s + (0.146 − 0.146i)15-s − 0.250·16-s − 0.312i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.697 + 0.716i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.697 + 0.716i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.72898 - 0.729337i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.72898 - 0.729337i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 + i)T \) |
| 3 | \( 1 - 1.73T \) |
| 13 | \( 1 + (3.92 - 12.3i)T \) |
good | 5 | \( 1 + (-1.26 + 1.26i)T - 25iT^{2} \) |
| 7 | \( 1 + (-0.732 - 0.732i)T + 49iT^{2} \) |
| 11 | \( 1 + (1.73 + 1.73i)T + 121iT^{2} \) |
| 17 | \( 1 + 5.32iT - 289T^{2} \) |
| 19 | \( 1 + (14.7 - 14.7i)T - 361iT^{2} \) |
| 23 | \( 1 + 5.32iT - 529T^{2} \) |
| 29 | \( 1 - 4.14T + 841T^{2} \) |
| 31 | \( 1 + (24.9 - 24.9i)T - 961iT^{2} \) |
| 37 | \( 1 + (3.14 + 3.14i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (-44.4 + 44.4i)T - 1.68e3iT^{2} \) |
| 43 | \( 1 + 37.1iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (30.8 + 30.8i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 - 57.7T + 2.80e3T^{2} \) |
| 59 | \( 1 + (66.6 + 66.6i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 - 103.T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-46.6 + 46.6i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + (26.9 - 26.9i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 + (-5.67 - 5.67i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 4.21T + 6.24e3T^{2} \) |
| 83 | \( 1 + (109. - 109. i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (19.5 + 19.5i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + (-4.03 + 4.03i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.05022074096793938524701252267, −13.01751301021265366257630862930, −12.06996748201319764501955260071, −10.81249036430437921050728411986, −9.603373426463757757849281407219, −8.576448612925182911060043559716, −6.94724977497096726507135375243, −5.32042872923809144637685446922, −3.83585695595220724030054914464, −2.04895953306349928450982442824,
2.72332490700667382595560767124, 4.42686904735446228657874972521, 5.99592639545284492878394082543, 7.36612495223565123544504107311, 8.412123354644109433154813164313, 9.797433138008203317680747890569, 11.04572872376180467560621466891, 12.61032564693647504572864253688, 13.32582168937518093575634561378, 14.49772279980073101209607763738