L(s) = 1 | + (0.5 + 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s − 5-s + (−0.499 + 0.866i)6-s + (1 − 1.73i)7-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (−0.5 − 0.866i)10-s + (−1 − 1.73i)11-s − 0.999·12-s + (2.5 − 2.59i)13-s + 1.99·14-s + (−0.5 − 0.866i)15-s + (−0.5 − 0.866i)16-s + (−2.5 + 4.33i)17-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s − 0.447·5-s + (−0.204 + 0.353i)6-s + (0.377 − 0.654i)7-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.158 − 0.273i)10-s + (−0.301 − 0.522i)11-s − 0.288·12-s + (0.693 − 0.720i)13-s + 0.534·14-s + (−0.129 − 0.223i)15-s + (−0.125 − 0.216i)16-s + (−0.606 + 1.05i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.477 - 0.878i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.477 - 0.878i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.956349 + 0.568623i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.956349 + 0.568623i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (-2.5 + 2.59i)T \) |
good | 5 | \( 1 + T + 5T^{2} \) |
| 7 | \( 1 + (-1 + 1.73i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1 + 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.5 - 4.33i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 + 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3 + 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.5 - 7.79i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + (-5.5 - 9.52i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.5 + 4.33i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5 - 8.66i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 2T + 47T^{2} \) |
| 53 | \( 1 + T + 53T^{2} \) |
| 59 | \( 1 + (-4 + 6.92i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.5 + 9.52i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-7 + 12.1i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 13T + 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (1 + 1.73i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1 + 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.72335395250540385418313040984, −13.74556078736786250052476462286, −12.78797333273494567495868239787, −11.24536489118274434866906356977, −10.32309361018841613699534679725, −8.606747222634992294453947391565, −7.892840979726185351712776661992, −6.31853884050067719990124591716, −4.74671246253920085262181588315, −3.49199774966556626951947285055,
2.19914849365351686454379623697, 4.06164971991764944799633028143, 5.71353738541044452852246427228, 7.35495711273524785367998704520, 8.651546379069765902010011758834, 9.813277683056482657183578413109, 11.50830975629029436416191828239, 11.87481719325640869891287111228, 13.22864199670998726249811629288, 14.02284794869150380654077828001