Properties

Label 2-78-13.2-c2-0-2
Degree $2$
Conductor $78$
Sign $0.895 - 0.445i$
Analytic cond. $2.12534$
Root an. cond. $1.45785$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.36 + 0.366i)2-s + (0.866 + 1.5i)3-s + (1.73 + i)4-s + (4.02 − 4.02i)5-s + (0.633 + 2.36i)6-s + (−4.99 + 1.33i)7-s + (1.99 + 2i)8-s + (−1.5 + 2.59i)9-s + (6.97 − 4.02i)10-s + (−3.41 + 12.7i)11-s + 3.46i·12-s + (3.81 − 12.4i)13-s − 7.31·14-s + (9.52 + 2.55i)15-s + (1.99 + 3.46i)16-s + (−16.3 − 9.42i)17-s + ⋯
L(s)  = 1  + (0.683 + 0.183i)2-s + (0.288 + 0.5i)3-s + (0.433 + 0.250i)4-s + (0.805 − 0.805i)5-s + (0.105 + 0.394i)6-s + (−0.714 + 0.191i)7-s + (0.249 + 0.250i)8-s + (−0.166 + 0.288i)9-s + (0.697 − 0.402i)10-s + (−0.310 + 1.15i)11-s + 0.288i·12-s + (0.293 − 0.956i)13-s − 0.522·14-s + (0.635 + 0.170i)15-s + (0.124 + 0.216i)16-s + (−0.960 − 0.554i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.895 - 0.445i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.895 - 0.445i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78\)    =    \(2 \cdot 3 \cdot 13\)
Sign: $0.895 - 0.445i$
Analytic conductor: \(2.12534\)
Root analytic conductor: \(1.45785\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{78} (67, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 78,\ (\ :1),\ 0.895 - 0.445i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.93001 + 0.453849i\)
\(L(\frac12)\) \(\approx\) \(1.93001 + 0.453849i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.36 - 0.366i)T \)
3 \( 1 + (-0.866 - 1.5i)T \)
13 \( 1 + (-3.81 + 12.4i)T \)
good5 \( 1 + (-4.02 + 4.02i)T - 25iT^{2} \)
7 \( 1 + (4.99 - 1.33i)T + (42.4 - 24.5i)T^{2} \)
11 \( 1 + (3.41 - 12.7i)T + (-104. - 60.5i)T^{2} \)
17 \( 1 + (16.3 + 9.42i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (7.85 + 29.3i)T + (-312. + 180.5i)T^{2} \)
23 \( 1 + (10.4 - 6.05i)T + (264.5 - 458. i)T^{2} \)
29 \( 1 + (-18.4 - 31.9i)T + (-420.5 + 728. i)T^{2} \)
31 \( 1 + (6.48 - 6.48i)T - 961iT^{2} \)
37 \( 1 + (-13.6 + 50.7i)T + (-1.18e3 - 684.5i)T^{2} \)
41 \( 1 + (6.38 + 1.70i)T + (1.45e3 + 840.5i)T^{2} \)
43 \( 1 + (-11.7 - 6.80i)T + (924.5 + 1.60e3i)T^{2} \)
47 \( 1 + (-61.6 - 61.6i)T + 2.20e3iT^{2} \)
53 \( 1 - 4.64T + 2.80e3T^{2} \)
59 \( 1 + (-24.1 + 6.45i)T + (3.01e3 - 1.74e3i)T^{2} \)
61 \( 1 + (19.2 - 33.3i)T + (-1.86e3 - 3.22e3i)T^{2} \)
67 \( 1 + (-91.8 - 24.6i)T + (3.88e3 + 2.24e3i)T^{2} \)
71 \( 1 + (-10.5 - 39.2i)T + (-4.36e3 + 2.52e3i)T^{2} \)
73 \( 1 + (-60.4 - 60.4i)T + 5.32e3iT^{2} \)
79 \( 1 + 94.2T + 6.24e3T^{2} \)
83 \( 1 + (63.4 - 63.4i)T - 6.88e3iT^{2} \)
89 \( 1 + (-40.3 + 150. i)T + (-6.85e3 - 3.96e3i)T^{2} \)
97 \( 1 + (39.2 + 146. i)T + (-8.14e3 + 4.70e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.19669188061488014068221775101, −13.03239388779931940198648714943, −12.70188107472452708306478363051, −10.95081036181626650825447065815, −9.699519629941042810164147850321, −8.806611844648295471473901094277, −7.07945159541479796051819060587, −5.58224358065505962444410043928, −4.52559726024657033911490971382, −2.60663425455804175641434139017, 2.26404979982670582837484680998, 3.75848604698402290349650874034, 6.08742647797107526928395949237, 6.55011400135775077158026706076, 8.328557056663830287523161360047, 9.892924643009544628558941781215, 10.86763285361494331761247741347, 12.12049479701729260829120512037, 13.45267820216474587961072514927, 13.77970767469074200095028040316

Graph of the $Z$-function along the critical line