Properties

Label 2-78-1.1-c3-0-1
Degree $2$
Conductor $78$
Sign $1$
Analytic cond. $4.60214$
Root an. cond. $2.14526$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·3-s + 4·4-s + 10·5-s − 6·6-s − 8·7-s − 8·8-s + 9·9-s − 20·10-s + 40·11-s + 12·12-s + 13·13-s + 16·14-s + 30·15-s + 16·16-s + 130·17-s − 18·18-s − 20·19-s + 40·20-s − 24·21-s − 80·22-s − 24·24-s − 25·25-s − 26·26-s + 27·27-s − 32·28-s − 18·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.894·5-s − 0.408·6-s − 0.431·7-s − 0.353·8-s + 1/3·9-s − 0.632·10-s + 1.09·11-s + 0.288·12-s + 0.277·13-s + 0.305·14-s + 0.516·15-s + 1/4·16-s + 1.85·17-s − 0.235·18-s − 0.241·19-s + 0.447·20-s − 0.249·21-s − 0.775·22-s − 0.204·24-s − 1/5·25-s − 0.196·26-s + 0.192·27-s − 0.215·28-s − 0.115·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78\)    =    \(2 \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(4.60214\)
Root analytic conductor: \(2.14526\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 78,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.518843172\)
\(L(\frac12)\) \(\approx\) \(1.518843172\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
3 \( 1 - p T \)
13 \( 1 - p T \)
good5 \( 1 - 2 p T + p^{3} T^{2} \)
7 \( 1 + 8 T + p^{3} T^{2} \)
11 \( 1 - 40 T + p^{3} T^{2} \)
17 \( 1 - 130 T + p^{3} T^{2} \)
19 \( 1 + 20 T + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 + 18 T + p^{3} T^{2} \)
31 \( 1 + 184 T + p^{3} T^{2} \)
37 \( 1 + 2 p T + p^{3} T^{2} \)
41 \( 1 + 362 T + p^{3} T^{2} \)
43 \( 1 - 76 T + p^{3} T^{2} \)
47 \( 1 + 452 T + p^{3} T^{2} \)
53 \( 1 - 382 T + p^{3} T^{2} \)
59 \( 1 - 464 T + p^{3} T^{2} \)
61 \( 1 - 358 T + p^{3} T^{2} \)
67 \( 1 + 700 T + p^{3} T^{2} \)
71 \( 1 + 748 T + p^{3} T^{2} \)
73 \( 1 - 1058 T + p^{3} T^{2} \)
79 \( 1 + 976 T + p^{3} T^{2} \)
83 \( 1 + 1008 T + p^{3} T^{2} \)
89 \( 1 + 386 T + p^{3} T^{2} \)
97 \( 1 + 614 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.09756807789829120084423529219, −12.91570494528019113435940065811, −11.71138578085443686332141895308, −10.14962994950704125001025271428, −9.533349560254652641545745262612, −8.442498337872731240943690035565, −7.03033249388355308990852937499, −5.78100985038299022192291316608, −3.43742783075325042177745966542, −1.58989444307572857990467265711, 1.58989444307572857990467265711, 3.43742783075325042177745966542, 5.78100985038299022192291316608, 7.03033249388355308990852937499, 8.442498337872731240943690035565, 9.533349560254652641545745262612, 10.14962994950704125001025271428, 11.71138578085443686332141895308, 12.91570494528019113435940065811, 14.09756807789829120084423529219

Graph of the $Z$-function along the critical line