Properties

Label 2-78-1.1-c3-0-0
Degree $2$
Conductor $78$
Sign $1$
Analytic cond. $4.60214$
Root an. cond. $2.14526$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3·3-s + 4·4-s − 16·5-s + 6·6-s + 28·7-s − 8·8-s + 9·9-s + 32·10-s + 34·11-s − 12·12-s − 13·13-s − 56·14-s + 48·15-s + 16·16-s + 138·17-s − 18·18-s + 108·19-s − 64·20-s − 84·21-s − 68·22-s − 52·23-s + 24·24-s + 131·25-s + 26·26-s − 27·27-s + 112·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 1.43·5-s + 0.408·6-s + 1.51·7-s − 0.353·8-s + 1/3·9-s + 1.01·10-s + 0.931·11-s − 0.288·12-s − 0.277·13-s − 1.06·14-s + 0.826·15-s + 1/4·16-s + 1.96·17-s − 0.235·18-s + 1.30·19-s − 0.715·20-s − 0.872·21-s − 0.658·22-s − 0.471·23-s + 0.204·24-s + 1.04·25-s + 0.196·26-s − 0.192·27-s + 0.755·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78\)    =    \(2 \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(4.60214\)
Root analytic conductor: \(2.14526\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 78,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8688481197\)
\(L(\frac12)\) \(\approx\) \(0.8688481197\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
3 \( 1 + p T \)
13 \( 1 + p T \)
good5 \( 1 + 16 T + p^{3} T^{2} \)
7 \( 1 - 4 p T + p^{3} T^{2} \)
11 \( 1 - 34 T + p^{3} T^{2} \)
17 \( 1 - 138 T + p^{3} T^{2} \)
19 \( 1 - 108 T + p^{3} T^{2} \)
23 \( 1 + 52 T + p^{3} T^{2} \)
29 \( 1 + 190 T + p^{3} T^{2} \)
31 \( 1 + 176 T + p^{3} T^{2} \)
37 \( 1 - 342 T + p^{3} T^{2} \)
41 \( 1 - 240 T + p^{3} T^{2} \)
43 \( 1 + 140 T + p^{3} T^{2} \)
47 \( 1 - 454 T + p^{3} T^{2} \)
53 \( 1 - 198 T + p^{3} T^{2} \)
59 \( 1 + 154 T + p^{3} T^{2} \)
61 \( 1 - 34 T + p^{3} T^{2} \)
67 \( 1 + 656 T + p^{3} T^{2} \)
71 \( 1 - 550 T + p^{3} T^{2} \)
73 \( 1 - 614 T + p^{3} T^{2} \)
79 \( 1 - 8 T + p^{3} T^{2} \)
83 \( 1 - 762 T + p^{3} T^{2} \)
89 \( 1 + 444 T + p^{3} T^{2} \)
97 \( 1 - 1022 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.36187652030374236119641714348, −12.16390880733516895682194854980, −11.70689693897565924586307523323, −10.91830244627118822725205067042, −9.419328241569117798848743953908, −7.85370014128061745764062675793, −7.49990699700038422974083219008, −5.46429382967118041432651062610, −3.89437210774905401661320507711, −1.10400107719111997753143848713, 1.10400107719111997753143848713, 3.89437210774905401661320507711, 5.46429382967118041432651062610, 7.49990699700038422974083219008, 7.85370014128061745764062675793, 9.419328241569117798848743953908, 10.91830244627118822725205067042, 11.70689693897565924586307523323, 12.16390880733516895682194854980, 14.36187652030374236119641714348

Graph of the $Z$-function along the critical line