Properties

Label 2-77e2-1.1-c1-0-37
Degree $2$
Conductor $5929$
Sign $1$
Analytic cond. $47.3433$
Root an. cond. $6.88064$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.36·2-s + 3.58·4-s − 3.75·8-s − 3·9-s + 1.70·16-s + 7.09·18-s − 9.58·23-s − 5·25-s + 10.6·29-s + 3.48·32-s − 10.7·36-s − 1.36·37-s − 8.74·43-s + 22.6·46-s + 11.8·50-s − 13.1·53-s − 25.2·58-s − 11.6·64-s + 16.3·67-s + 9.97·71-s + 11.2·72-s + 3.23·74-s − 12.6·79-s + 9·81-s + 20.6·86-s − 34.3·92-s − 17.9·100-s + ⋯
L(s)  = 1  − 1.67·2-s + 1.79·4-s − 1.32·8-s − 9-s + 0.425·16-s + 1.67·18-s − 1.99·23-s − 25-s + 1.98·29-s + 0.616·32-s − 1.79·36-s − 0.224·37-s − 1.33·43-s + 3.34·46-s + 1.67·50-s − 1.80·53-s − 3.31·58-s − 1.45·64-s + 1.99·67-s + 1.18·71-s + 1.32·72-s + 0.375·74-s − 1.42·79-s + 81-s + 2.22·86-s − 3.58·92-s − 1.79·100-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5929 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5929 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5929\)    =    \(7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(47.3433\)
Root analytic conductor: \(6.88064\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5929,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4370610869\)
\(L(\frac12)\) \(\approx\) \(0.4370610869\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
11 \( 1 \)
good2 \( 1 + 2.36T + 2T^{2} \)
3 \( 1 + 3T^{2} \)
5 \( 1 + 5T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 9.58T + 23T^{2} \)
29 \( 1 - 10.6T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 + 1.36T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 8.74T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 13.1T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 - 16.3T + 67T^{2} \)
71 \( 1 - 9.97T + 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 + 12.6T + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.191657500028255235866447212254, −7.83025789135503909876025013256, −6.73147352459330420466814695361, −6.30899743965709266700389374617, −5.47450337626528486761660851962, −4.43003800921052062103088679659, −3.34410703578526544534365014623, −2.42876492414158922648548049139, −1.68191468502662224913877117436, −0.43943415230242629590891216453, 0.43943415230242629590891216453, 1.68191468502662224913877117436, 2.42876492414158922648548049139, 3.34410703578526544534365014623, 4.43003800921052062103088679659, 5.47450337626528486761660851962, 6.30899743965709266700389374617, 6.73147352459330420466814695361, 7.83025789135503909876025013256, 8.191657500028255235866447212254

Graph of the $Z$-function along the critical line