Properties

Label 2-77e2-1.1-c1-0-235
Degree $2$
Conductor $5929$
Sign $1$
Analytic cond. $47.3433$
Root an. cond. $6.88064$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.82·2-s + 5.98·4-s + 11.2·8-s − 3·9-s + 19.8·16-s − 8.47·18-s + 7.50·23-s − 5·25-s + 4.60·29-s + 33.5·32-s − 17.9·36-s + 8.21·37-s + 6.59·43-s + 21.2·46-s − 14.1·50-s + 1.86·53-s + 13.0·58-s + 55.0·64-s + 6.09·67-s − 9.83·71-s − 33.7·72-s + 23.1·74-s − 15.8·79-s + 9·81-s + 18.6·86-s + 44.8·92-s − 29.9·100-s + ⋯
L(s)  = 1  + 1.99·2-s + 2.99·4-s + 3.97·8-s − 9-s + 4.95·16-s − 1.99·18-s + 1.56·23-s − 25-s + 0.854·29-s + 5.92·32-s − 2.99·36-s + 1.34·37-s + 1.00·43-s + 3.12·46-s − 1.99·50-s + 0.256·53-s + 1.70·58-s + 6.87·64-s + 0.744·67-s − 1.16·71-s − 3.97·72-s + 2.69·74-s − 1.77·79-s + 81-s + 2.01·86-s + 4.68·92-s − 2.99·100-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5929 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5929 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5929\)    =    \(7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(47.3433\)
Root analytic conductor: \(6.88064\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5929,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(8.235280038\)
\(L(\frac12)\) \(\approx\) \(8.235280038\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
11 \( 1 \)
good2 \( 1 - 2.82T + 2T^{2} \)
3 \( 1 + 3T^{2} \)
5 \( 1 + 5T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 7.50T + 23T^{2} \)
29 \( 1 - 4.60T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 8.21T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 - 6.59T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 1.86T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 - 6.09T + 67T^{2} \)
71 \( 1 + 9.83T + 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 + 15.8T + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75881253630905358108257165160, −7.13041446635384749901192738006, −6.34077308139470516796292032152, −5.82342553589839704838132068756, −5.18761865100732785524258757119, −4.48735199612003579283658456899, −3.74977561812583921183212001733, −2.87482793688771641540401176480, −2.46793742936473786832152673606, −1.20337548620459725403953017335, 1.20337548620459725403953017335, 2.46793742936473786832152673606, 2.87482793688771641540401176480, 3.74977561812583921183212001733, 4.48735199612003579283658456899, 5.18761865100732785524258757119, 5.82342553589839704838132068756, 6.34077308139470516796292032152, 7.13041446635384749901192738006, 7.75881253630905358108257165160

Graph of the $Z$-function along the critical line