Properties

Label 2-7728-1.1-c1-0-102
Degree $2$
Conductor $7728$
Sign $-1$
Analytic cond. $61.7083$
Root an. cond. $7.85546$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 0.697·5-s + 7-s + 9-s + 5·11-s + 2.30·13-s + 0.697·15-s − 5.60·17-s + 1.60·19-s − 21-s − 23-s − 4.51·25-s − 27-s + 6.21·29-s − 3·31-s − 5·33-s − 0.697·35-s − 9·37-s − 2.30·39-s − 12.2·41-s − 5.51·43-s − 0.697·45-s + 8.60·47-s + 49-s + 5.60·51-s − 12.5·53-s − 3.48·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.311·5-s + 0.377·7-s + 0.333·9-s + 1.50·11-s + 0.638·13-s + 0.180·15-s − 1.35·17-s + 0.368·19-s − 0.218·21-s − 0.208·23-s − 0.902·25-s − 0.192·27-s + 1.15·29-s − 0.538·31-s − 0.870·33-s − 0.117·35-s − 1.47·37-s − 0.368·39-s − 1.90·41-s − 0.840·43-s − 0.103·45-s + 1.25·47-s + 0.142·49-s + 0.784·51-s − 1.71·53-s − 0.470·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7728\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(61.7083\)
Root analytic conductor: \(7.85546\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7728} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7728,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
23 \( 1 + T \)
good5 \( 1 + 0.697T + 5T^{2} \)
11 \( 1 - 5T + 11T^{2} \)
13 \( 1 - 2.30T + 13T^{2} \)
17 \( 1 + 5.60T + 17T^{2} \)
19 \( 1 - 1.60T + 19T^{2} \)
29 \( 1 - 6.21T + 29T^{2} \)
31 \( 1 + 3T + 31T^{2} \)
37 \( 1 + 9T + 37T^{2} \)
41 \( 1 + 12.2T + 41T^{2} \)
43 \( 1 + 5.51T + 43T^{2} \)
47 \( 1 - 8.60T + 47T^{2} \)
53 \( 1 + 12.5T + 53T^{2} \)
59 \( 1 + 3.90T + 59T^{2} \)
61 \( 1 + 1.09T + 61T^{2} \)
67 \( 1 - 11.9T + 67T^{2} \)
71 \( 1 + 0.908T + 71T^{2} \)
73 \( 1 + 2.21T + 73T^{2} \)
79 \( 1 - T + 79T^{2} \)
83 \( 1 + 5.60T + 83T^{2} \)
89 \( 1 - 10.9T + 89T^{2} \)
97 \( 1 + 17.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.38077454501806412080360764699, −6.62619166709045898763086378010, −6.37265764925350221102434827378, −5.38145833087559759782643624451, −4.66190410374602781720437464886, −3.97139063985975143547150197410, −3.36276885191000819959010666380, −1.97143991476861053671338435353, −1.29986386827620440851268795892, 0, 1.29986386827620440851268795892, 1.97143991476861053671338435353, 3.36276885191000819959010666380, 3.97139063985975143547150197410, 4.66190410374602781720437464886, 5.38145833087559759782643624451, 6.37265764925350221102434827378, 6.62619166709045898763086378010, 7.38077454501806412080360764699

Graph of the $Z$-function along the critical line