# Properties

 Label 2-770-7.2-c1-0-15 Degree $2$ Conductor $770$ Sign $0.386 + 0.922i$ Analytic cond. $6.14848$ Root an. cond. $2.47961$ Motivic weight $1$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (0.5 − 0.866i)5-s + 0.999·6-s + (2.5 − 0.866i)7-s + 0.999·8-s + (1 − 1.73i)9-s + (0.499 + 0.866i)10-s + (−0.5 − 0.866i)11-s + (−0.499 + 0.866i)12-s − 13-s + (−0.500 + 2.59i)14-s − 0.999·15-s + (−0.5 + 0.866i)16-s + ⋯
 L(s)  = 1 + (−0.353 + 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s + (0.223 − 0.387i)5-s + 0.408·6-s + (0.944 − 0.327i)7-s + 0.353·8-s + (0.333 − 0.577i)9-s + (0.158 + 0.273i)10-s + (−0.150 − 0.261i)11-s + (−0.144 + 0.249i)12-s − 0.277·13-s + (−0.133 + 0.694i)14-s − 0.258·15-s + (−0.125 + 0.216i)16-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$770$$    =    $$2 \cdot 5 \cdot 7 \cdot 11$$ Sign: $0.386 + 0.922i$ Analytic conductor: $$6.14848$$ Root analytic conductor: $$2.47961$$ Motivic weight: $$1$$ Rational: no Arithmetic: yes Character: $\chi_{770} (331, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 770,\ (\ :1/2),\ 0.386 + 0.922i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$0.980799 - 0.652409i$$ $$L(\frac12)$$ $$\approx$$ $$0.980799 - 0.652409i$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + (0.5 - 0.866i)T$$
5 $$1 + (-0.5 + 0.866i)T$$
7 $$1 + (-2.5 + 0.866i)T$$
11 $$1 + (0.5 + 0.866i)T$$
good3 $$1 + (0.5 + 0.866i)T + (-1.5 + 2.59i)T^{2}$$
13 $$1 + T + 13T^{2}$$
17 $$1 + (-8.5 + 14.7i)T^{2}$$
19 $$1 + (1 - 1.73i)T + (-9.5 - 16.4i)T^{2}$$
23 $$1 + (-3 + 5.19i)T + (-11.5 - 19.9i)T^{2}$$
29 $$1 + 9T + 29T^{2}$$
31 $$1 + (-2 - 3.46i)T + (-15.5 + 26.8i)T^{2}$$
37 $$1 + (-2 + 3.46i)T + (-18.5 - 32.0i)T^{2}$$
41 $$1 - 12T + 41T^{2}$$
43 $$1 + 10T + 43T^{2}$$
47 $$1 + (-6 + 10.3i)T + (-23.5 - 40.7i)T^{2}$$
53 $$1 + (3 + 5.19i)T + (-26.5 + 45.8i)T^{2}$$
59 $$1 + (1.5 + 2.59i)T + (-29.5 + 51.0i)T^{2}$$
61 $$1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2}$$
67 $$1 + (-6.5 - 11.2i)T + (-33.5 + 58.0i)T^{2}$$
71 $$1 + 71T^{2}$$
73 $$1 + (7 + 12.1i)T + (-36.5 + 63.2i)T^{2}$$
79 $$1 + (8.5 - 14.7i)T + (-39.5 - 68.4i)T^{2}$$
83 $$1 - 6T + 83T^{2}$$
89 $$1 + (-3 + 5.19i)T + (-44.5 - 77.0i)T^{2}$$
97 $$1 - 5T + 97T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$