L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.533 − 0.924i)3-s + (−0.499 + 0.866i)4-s + (1.13 − 1.92i)5-s − 1.06·6-s + (1.22 − 2.34i)7-s + 0.999·8-s + (0.930 + 1.61i)9-s + (−2.23 − 0.0212i)10-s + (−2.75 − 1.85i)11-s + (0.533 + 0.924i)12-s − 1.72i·13-s + (−2.64 + 0.116i)14-s + (−1.17 − 2.07i)15-s + (−0.5 − 0.866i)16-s + (−1.33 − 0.772i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.308 − 0.533i)3-s + (−0.249 + 0.433i)4-s + (0.508 − 0.861i)5-s − 0.435·6-s + (0.461 − 0.887i)7-s + 0.353·8-s + (0.310 + 0.537i)9-s + (−0.707 − 0.00673i)10-s + (−0.829 − 0.558i)11-s + (0.154 + 0.266i)12-s − 0.479i·13-s + (−0.706 + 0.0310i)14-s + (−0.303 − 0.536i)15-s + (−0.125 − 0.216i)16-s + (−0.324 − 0.187i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.816 + 0.577i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.816 + 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.443499 - 1.39356i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.443499 - 1.39356i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 + (-1.13 + 1.92i)T \) |
| 7 | \( 1 + (-1.22 + 2.34i)T \) |
| 11 | \( 1 + (2.75 + 1.85i)T \) |
good | 3 | \( 1 + (-0.533 + 0.924i)T + (-1.5 - 2.59i)T^{2} \) |
| 13 | \( 1 + 1.72iT - 13T^{2} \) |
| 17 | \( 1 + (1.33 + 0.772i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.241 - 0.418i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.47 + 2.00i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 1.63iT - 29T^{2} \) |
| 31 | \( 1 + (-4.21 - 2.43i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.81 - 1.04i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 8.37T + 41T^{2} \) |
| 43 | \( 1 - 1.61T + 43T^{2} \) |
| 47 | \( 1 + (-1.81 - 3.14i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (9.24 + 5.33i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.56 - 2.05i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.573 - 0.993i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.81 + 2.77i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6.87T + 71T^{2} \) |
| 73 | \( 1 + (-6.69 - 3.86i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-8.64 + 4.99i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.34iT - 83T^{2} \) |
| 89 | \( 1 + (-6.49 + 3.75i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 6.99T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25513839899096579415801627891, −9.031967340409683125688161985301, −8.246516957838494741717718139746, −7.74239484902805277202583680305, −6.67463357257568837635774842678, −5.20546722208826897236221975401, −4.58688874018367141265189256535, −3.10851442394123760335599118548, −1.90710785363511210301800814881, −0.830216969593325251740130824635,
1.93686201317998150723399940381, 3.08221955202945798521214040390, 4.48376149664715241132803571520, 5.40941853961548798675959679948, 6.38897866717942728314021617431, 7.15255270155505600269844910313, 8.151224544874206408099872647362, 9.081134819412966340142921607239, 9.668192357021525458003350305879, 10.39910230225174433450243128065