L(s) = 1 | + (−0.358 − 0.933i)2-s + (1.75 + 2.69i)3-s + (−0.743 + 0.669i)4-s + (2.03 + 0.932i)5-s + (1.89 − 2.60i)6-s + (2.64 + 0.165i)7-s + (0.891 + 0.453i)8-s + (−2.99 + 6.72i)9-s + (0.142 − 2.23i)10-s + (−1.08 − 3.13i)11-s + (−3.10 − 0.833i)12-s + (2.83 + 0.449i)13-s + (−0.792 − 2.52i)14-s + (1.04 + 7.12i)15-s + (0.104 − 0.994i)16-s + (1.82 − 4.74i)17-s + ⋯ |
L(s) = 1 | + (−0.253 − 0.660i)2-s + (1.01 + 1.55i)3-s + (−0.371 + 0.334i)4-s + (0.908 + 0.417i)5-s + (0.772 − 1.06i)6-s + (0.998 + 0.0624i)7-s + (0.315 + 0.160i)8-s + (−0.997 + 2.24i)9-s + (0.0451 − 0.705i)10-s + (−0.328 − 0.944i)11-s + (−0.897 − 0.240i)12-s + (0.787 + 0.124i)13-s + (−0.211 − 0.674i)14-s + (0.269 + 1.83i)15-s + (0.0261 − 0.248i)16-s + (0.441 − 1.15i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.649 - 0.760i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.649 - 0.760i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.10901 + 0.972970i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.10901 + 0.972970i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.358 + 0.933i)T \) |
| 5 | \( 1 + (-2.03 - 0.932i)T \) |
| 7 | \( 1 + (-2.64 - 0.165i)T \) |
| 11 | \( 1 + (1.08 + 3.13i)T \) |
good | 3 | \( 1 + (-1.75 - 2.69i)T + (-1.22 + 2.74i)T^{2} \) |
| 13 | \( 1 + (-2.83 - 0.449i)T + (12.3 + 4.01i)T^{2} \) |
| 17 | \( 1 + (-1.82 + 4.74i)T + (-12.6 - 11.3i)T^{2} \) |
| 19 | \( 1 + (-2.30 + 2.56i)T + (-1.98 - 18.8i)T^{2} \) |
| 23 | \( 1 + (-5.32 - 1.42i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (6.19 + 2.01i)T + (23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (10.5 - 1.10i)T + (30.3 - 6.44i)T^{2} \) |
| 37 | \( 1 + (7.64 + 4.96i)T + (15.0 + 33.8i)T^{2} \) |
| 41 | \( 1 + (6.13 - 1.99i)T + (33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + (5.89 - 5.89i)T - 43iT^{2} \) |
| 47 | \( 1 + (0.189 + 3.62i)T + (-46.7 + 4.91i)T^{2} \) |
| 53 | \( 1 + (2.00 + 1.61i)T + (11.0 + 51.8i)T^{2} \) |
| 59 | \( 1 + (4.09 + 4.54i)T + (-6.16 + 58.6i)T^{2} \) |
| 61 | \( 1 + (0.185 + 0.0194i)T + (59.6 + 12.6i)T^{2} \) |
| 67 | \( 1 + (-1.55 + 0.415i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-2.66 - 1.93i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.111 + 2.12i)T + (-72.6 - 7.63i)T^{2} \) |
| 79 | \( 1 + (-0.0795 + 0.178i)T + (-52.8 - 58.7i)T^{2} \) |
| 83 | \( 1 + (-0.0426 - 0.269i)T + (-78.9 + 25.6i)T^{2} \) |
| 89 | \( 1 + (0.977 + 1.69i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1.65 - 10.4i)T + (-92.2 - 29.9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46228040853197041211947883458, −9.416440991736158469764979827518, −9.118666264621376492750093626820, −8.316350528501728587229264738239, −7.30692970289839646201869808045, −5.39246116149034707440070524894, −5.07015721698415795009775723962, −3.59600531443532750327022429271, −3.03988169252985741241844157718, −1.85070997777273175606688886441,
1.47370804031724556941927398646, 1.83913443318180385040932698360, 3.53071409366836065357748803910, 5.16853773259495387585654886569, 5.95266775995406392125213196998, 7.02741908461143543792153938688, 7.56762911209057604008571797379, 8.521106235179482546702604124144, 8.819457874194265041530712697567, 9.903258367106618706425324727573