| L(s) = 1 | + (0.809 − 0.587i)2-s + (0.0759 + 0.233i)3-s + (0.309 − 0.951i)4-s + (−0.809 − 0.587i)5-s + (0.198 + 0.144i)6-s + (0.309 − 0.951i)7-s + (−0.309 − 0.951i)8-s + (2.37 − 1.72i)9-s − 10-s + (−3.31 + 0.0151i)11-s + 0.245·12-s + (0.931 − 0.677i)13-s + (−0.309 − 0.951i)14-s + (0.0759 − 0.233i)15-s + (−0.809 − 0.587i)16-s + (−5.30 − 3.85i)17-s + ⋯ |
| L(s) = 1 | + (0.572 − 0.415i)2-s + (0.0438 + 0.135i)3-s + (0.154 − 0.475i)4-s + (−0.361 − 0.262i)5-s + (0.0812 + 0.0590i)6-s + (0.116 − 0.359i)7-s + (−0.109 − 0.336i)8-s + (0.792 − 0.575i)9-s − 0.316·10-s + (−0.999 + 0.00455i)11-s + 0.0709·12-s + (0.258 − 0.187i)13-s + (−0.0825 − 0.254i)14-s + (0.0196 − 0.0603i)15-s + (−0.202 − 0.146i)16-s + (−1.28 − 0.933i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.327 + 0.944i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.327 + 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.05251 - 1.47831i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.05251 - 1.47831i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.809 + 0.587i)T \) |
| 5 | \( 1 + (0.809 + 0.587i)T \) |
| 7 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 + (3.31 - 0.0151i)T \) |
| good | 3 | \( 1 + (-0.0759 - 0.233i)T + (-2.42 + 1.76i)T^{2} \) |
| 13 | \( 1 + (-0.931 + 0.677i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (5.30 + 3.85i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.06 + 3.26i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 8.30T + 23T^{2} \) |
| 29 | \( 1 + (0.906 - 2.78i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-5.12 + 3.72i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (1.19 - 3.67i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (3.26 + 10.0i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 2.95T + 43T^{2} \) |
| 47 | \( 1 + (1.90 + 5.86i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (4.33 - 3.14i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (0.692 - 2.13i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-8.07 - 5.86i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 14.2T + 67T^{2} \) |
| 71 | \( 1 + (-0.307 - 0.223i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (2.23 - 6.87i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-1.83 + 1.33i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-9.16 - 6.65i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 4.48T + 89T^{2} \) |
| 97 | \( 1 + (2.79 - 2.03i)T + (29.9 - 92.2i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24546179464376258524112166889, −9.287467526764209845589366598954, −8.493332199677135224440234124336, −7.19354648176130101803349872700, −6.71429128162278588664725466582, −5.17503759034735192230726495027, −4.64305661873777476680571008978, −3.58307159195698252326036693221, −2.46777985945349701545628240215, −0.76652484081228053478780132746,
1.94910235144953301933116409020, 3.15139869836321740933095976900, 4.39597970265109203792801735129, 5.07676048907761696072150507045, 6.30114011757043934045788751924, 6.98947860189747642694395441997, 8.018677368509736524127576967197, 8.480701359867835003666314062474, 9.792079197714026963311164513782, 10.81167709322031839708193193793