Properties

Label 2-770-1.1-c1-0-20
Degree $2$
Conductor $770$
Sign $1$
Analytic cond. $6.14848$
Root an. cond. $2.47961$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3.10·3-s + 4-s + 5-s + 3.10·6-s − 7-s + 8-s + 6.62·9-s + 10-s + 11-s + 3.10·12-s − 3.62·13-s − 14-s + 3.10·15-s + 16-s − 4.20·17-s + 6.62·18-s − 8.15·19-s + 20-s − 3.10·21-s + 22-s + 0.897·23-s + 3.10·24-s + 25-s − 3.62·26-s + 11.2·27-s − 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.79·3-s + 0.5·4-s + 0.447·5-s + 1.26·6-s − 0.377·7-s + 0.353·8-s + 2.20·9-s + 0.316·10-s + 0.301·11-s + 0.895·12-s − 1.00·13-s − 0.267·14-s + 0.801·15-s + 0.250·16-s − 1.01·17-s + 1.56·18-s − 1.87·19-s + 0.223·20-s − 0.677·21-s + 0.213·22-s + 0.187·23-s + 0.633·24-s + 0.200·25-s − 0.711·26-s + 2.16·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(770\)    =    \(2 \cdot 5 \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(6.14848\)
Root analytic conductor: \(2.47961\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 770,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.093797967\)
\(L(\frac12)\) \(\approx\) \(4.093797967\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 - T \)
good3 \( 1 - 3.10T + 3T^{2} \)
13 \( 1 + 3.62T + 13T^{2} \)
17 \( 1 + 4.20T + 17T^{2} \)
19 \( 1 + 8.15T + 19T^{2} \)
23 \( 1 - 0.897T + 23T^{2} \)
29 \( 1 + 7.30T + 29T^{2} \)
31 \( 1 + 3.42T + 31T^{2} \)
37 \( 1 + 1.10T + 37T^{2} \)
41 \( 1 - 12.3T + 41T^{2} \)
43 \( 1 - 10.6T + 43T^{2} \)
47 \( 1 + 1.15T + 47T^{2} \)
53 \( 1 - 11.3T + 53T^{2} \)
59 \( 1 - 7.25T + 59T^{2} \)
61 \( 1 + 3.15T + 61T^{2} \)
67 \( 1 + 8.41T + 67T^{2} \)
71 \( 1 + 13.0T + 71T^{2} \)
73 \( 1 - 0.205T + 73T^{2} \)
79 \( 1 - 12.1T + 79T^{2} \)
83 \( 1 - 2.20T + 83T^{2} \)
89 \( 1 + 7.45T + 89T^{2} \)
97 \( 1 - 2.25T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19804626987765361386041370629, −9.194817351196831512690578516945, −8.858451861415374889270035817489, −7.62554813657593880164831646119, −7.00127292544751390939920300063, −5.95234927606692060360042708197, −4.47881869210866016638093045778, −3.85259624764558711104415686920, −2.56862858462667886089264267108, −2.07917122607290327788046218850, 2.07917122607290327788046218850, 2.56862858462667886089264267108, 3.85259624764558711104415686920, 4.47881869210866016638093045778, 5.95234927606692060360042708197, 7.00127292544751390939920300063, 7.62554813657593880164831646119, 8.858451861415374889270035817489, 9.194817351196831512690578516945, 10.19804626987765361386041370629

Graph of the $Z$-function along the critical line