L(s) = 1 | + (−0.5 + 0.363i)2-s + (−0.190 + 0.587i)4-s + (0.309 − 0.951i)7-s + (−0.309 − 0.951i)8-s + (−0.809 + 0.587i)9-s + (−0.809 − 0.587i)11-s + (0.190 + 0.587i)14-s + (0.190 − 0.587i)18-s + 0.618·22-s + 0.618·23-s + (0.309 + 0.951i)25-s + (0.5 + 0.363i)28-s + (−0.5 + 1.53i)29-s + 32-s + (−0.190 − 0.587i)36-s + (0.190 − 0.587i)37-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.363i)2-s + (−0.190 + 0.587i)4-s + (0.309 − 0.951i)7-s + (−0.309 − 0.951i)8-s + (−0.809 + 0.587i)9-s + (−0.809 − 0.587i)11-s + (0.190 + 0.587i)14-s + (0.190 − 0.587i)18-s + 0.618·22-s + 0.618·23-s + (0.309 + 0.951i)25-s + (0.5 + 0.363i)28-s + (−0.5 + 1.53i)29-s + 32-s + (−0.190 − 0.587i)36-s + (0.190 − 0.587i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 77 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.822 - 0.568i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 77 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.822 - 0.568i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3940077207\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3940077207\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 + (0.809 + 0.587i)T \) |
good | 2 | \( 1 + (0.5 - 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 3 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 5 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 - 0.618T + T^{2} \) |
| 29 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + 1.61T + T^{2} \) |
| 47 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + 1.61T + T^{2} \) |
| 71 | \( 1 + (-1.30 - 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.88908258775139866351665192359, −13.65532817676417750890003425419, −12.95006863085824755145486164698, −11.38933812356431967330611248854, −10.45975473868778616407928874431, −8.935139995367423919312740922857, −7.997295040882863506221465232122, −7.03454853540565329256094827597, −5.16992084082465797227471799327, −3.35405452155751025316205560791,
2.48329704472032446623488429724, 5.02305203641943809312723389715, 6.14991031457579889100996880776, 8.145878264529248582217719935070, 9.096411228983060337014424351550, 10.12551310524947616653456690813, 11.33219012771395860620261866981, 12.19464558618417044293041407130, 13.64000830322253703856461079702, 14.91028726419622096218462723070